Supercharging Real-Time AI Pipelines with Apache Pulsar Functions

Artificial intelligence (AI) has significantly transformed the way we live and work. From virtual assistants to autonomous vehicles, AI is rapidly changing the world. As the demand for real-time AI grows, developers and businesses require a streamlined process for building real-time inference engines. Apache Pulsar, a messaging and streaming platform, provides a convenient and powerful solution for addressing some of the limitations of traditional machine learning workflows. In this article, we’ll explore how Pulsar Functions, a serverless computing framework that runs on top of Apache Pulsar, can help build real-time inference engines for low-latency predictions.

Utilizing the pub/sub nature of Apache Pulsar with Pulsar Functions for real-time AI

Pulsar Functions takes advantage of the inherent pub/sub nature of Apache Pulsar. The pub/sub messaging pattern allows for messages to be published to a topic and then delivered to different subscribers. Pulsar Functions leverages this pattern and provides a framework for true real-time AI. Pulsar Functions allows developers to deploy functions in the cloud and execute them in response to events. When combined with the pub/sub messaging pattern, Pulsar Functions enable real-time execution, making it an ideal choice for building real-time inference engines.

Building a real-time inference engine using Pulsar Functions for low-latency predictions

Our goal is to build a real-time inference engine, powered by Pulsar Functions, that can retrieve low-latency predictions both one at a time and in bulk. We will use the popular Iris dataset to demonstrate the process. The Iris dataset contains measurements of Iris flowers, along with their corresponding species. We’ll use a decision tree classifier to predict the species based on the measurements.

Serializing the model using the pickle module for model training

We use the pickle module to serialize the model during training. This dumps the model to a file in the working directory. The pickled model can then be loaded by the Pulsar Functions and used to make predictions without having to retrain the model.

This function does not depend on the user context. Parameters and configuration options specific to the calling user could be used to adjust the behavior if desired. This allows multiple users to query the same function with different inputs without affecting each other.

Decision tree representation for the classifier

A decision tree classifier can be represented as a series of intuitive decisions based on feature values, that culminates in a prediction when a leaf node of the tree is reached. In the case of the Iris dataset, we have four features – sepal length, sepal width, petal length, and petal width – which we will use to classify the flowers into three species – Setosa, Versicolor, and Virginica. We’ll train the model on a fraction of the dataset using the decision tree classifier from scikit-learn.

Creating and triggering the function with the Pulsar standalone client

With the Pulsar standalone client running, we only need to create and trigger our function. The Pulsar Functions client will automatically detect any new function deployments and handle the scaling of function instances based on the workload.

This bulk version of the function is similar but differs in three ways. First, the input is a list of feature sets instead of a single feature set. Second, the function retrieves all predictions at once instead of returning them one at a time. Finally, the function returns a list of predictions instead of a single prediction.

Pulsar Functions provide a simple yet powerful way to build real-time inference engines for low-latency predictions. While this example only scratches the surface of what’s possible with Pulsar Functions, it provides a blueprint for implementing a real-time AI pipeline using Apache Pulsar. As the demand for real-time AI grows, developers and businesses should consider using Pulsar Functions to build efficient and effective AI systems.

Explore more

Maryland Data Center Boom Sparks Local Backlash

A quiet 42-acre plot in a Maryland suburb, once home to a local inn, is now at the center of a digital revolution that residents never asked for, promising immense power but revealing very few secrets. This site in Woodlawn is ground zero for a debate raging across the state, pitting the promise of high-tech infrastructure against the concerns of

Trend Analysis: Next-Generation Cyber Threats

The close of 2025 brings into sharp focus a fundamental transformation in cyber security, where the primary battleground has decisively shifted from compromising networks to manipulating the very logic and identity that underpins our increasingly automated digital world. As sophisticated AI and autonomous systems have moved from experimental technology to mainstream deployment, the nature and scale of cyber risk have

Ransomware Attack Cripples Romanian Water Authority

An entire nation’s water supply became the target of a digital siege when cybercriminals turned a standard computer security feature into a sophisticated weapon against Romania’s essential infrastructure. The attack, disclosed on December 20, targeted the National Administration “Apele Române” (Romanian Waters), the agency responsible for managing the country’s water resources. This incident serves as a stark reminder of the

African Cybercrime Crackdown Leads to 574 Arrests

Introduction A sweeping month-long dragnet across 19 African nations has dismantled intricate cybercriminal networks, showcasing the formidable power of unified, cross-border law enforcement in the digital age. This landmark effort, known as “Operation Sentinel,” represents a significant step forward in the global fight against online financial crimes that exploit vulnerabilities in our increasingly connected world. This article serves to answer

Zero-Click Exploits Redefined Cybersecurity in 2025

With an extensive background in artificial intelligence and machine learning, Dominic Jainy has a unique vantage point on the evolving cyber threat landscape. His work offers critical insights into how the very technologies designed for convenience and efficiency are being turned into potent weapons. In this discussion, we explore the seismic shifts of 2025, a year defined by the industrialization