Japan Unveils Plans for Fugaku Next, a Groundbreaking Zetta-Scale Supercomputer

Japan has announced its plans for the successor to the renowned Fugaku supercomputer, which is currently the world’s fourth-fastest according to Top500.org. This new system, named Fugaku Next, is set to be a Zetta-scale supercomputer, boasting an astounding performance of 1,000 exaFLOPS. To put this in perspective, this power level is a thousand times more potent than the current AMD-powered Frontier system. The ambitious project, revealed by Japan’s Ministry of Education, Culture, Sports, Science, and Technology (MEXT), will come with a hefty price tag of over $750 million and is expected to be operational by 2030.

The development of Fugaku Next is spearheaded by RIKEN and Fujitsu, driven by the urgent need to bolster AI-driven scientific research in Japan. This colossal Zetta-scale machine aims to address the growing computational demands of such research. In theory, a computer of this scale would require the energy output of 21 nuclear reactors, highlighting the significant power considerations involved. However, advancements in semiconductor manufacturing, led by giants such as TSMC, Intel, and Samsung, are moving towards the creation of 2nm transistors. These technological strides may make the enormous computational power of a Zetta-scale machine achievable within the projected timeframe.

Implications for Global High-Performance Computing

Japan has announced plans for Fugaku Next, the successor to its current Fugaku supercomputer, which ranks as the world’s fourth-fastest according to Top500.org. Fugaku Next aims to be a Zetta-scale supercomputer, offering an incredible performance of 1,000 exaFLOPS—making it a thousand times more powerful than the AMD-powered Frontier system. Announced by Japan’s Ministry of Education, Culture, Sports, Science, and Technology (MEXT), the ambitious project will cost over $750 million and is expected to be operational by 2030.

The development of Fugaku Next is being led by RIKEN and Fujitsu, aiming to significantly enhance AI-driven scientific research in Japan. This enormous Zetta-scale supercomputer is designed to meet the growing computational needs of advanced research initiatives. To give a sense of scale, a machine of this magnitude would theoretically require the energy output of 21 nuclear reactors. However, ongoing advancements in semiconductor technology by companies like TSMC, Intel, and Samsung, especially towards 2nm transistors, suggest that achieving this computational power could be feasible within the projected timeline.

Explore more

Why Are Big Data Engineers Vital to the Digital Economy?

In a world where every click, swipe, and sensor reading generates a data point, businesses are drowning in an ocean of information—yet only a fraction can harness its power, and the stakes are incredibly high. Consider this staggering reality: companies can lose up to 20% of their annual revenue due to inefficient data practices, a financial hit that serves as

How Will AI and 5G Transform Africa’s Mobile Startups?

Imagine a continent where mobile technology isn’t just a convenience but the very backbone of economic growth, connecting millions to opportunities previously out of reach, and setting the stage for a transformative era. Africa, with its vibrant and rapidly expanding mobile economy, stands at the threshold of a technological revolution driven by the powerful synergy of artificial intelligence (AI) and

Saudi Arabia Cuts Foreign Worker Salary Premiums Under Vision 2030

What happens when a nation known for its generous pay packages for foreign talent suddenly tightens the purse strings? In Saudi Arabia, a seismic shift is underway as salary premiums for expatriate workers, once a hallmark of the kingdom’s appeal, are being slashed. This dramatic change, set to unfold in 2025, signals a new era of fiscal caution and strategic

DevSecOps Evolution: From Shift Left to Shift Smart

Introduction to DevSecOps Transformation In today’s fast-paced digital landscape, where software releases happen in hours rather than months, the integration of security into the software development lifecycle (SDLC) has become a cornerstone of organizational success, especially as cyber threats escalate and the demand for speed remains relentless. DevSecOps, the practice of embedding security practices throughout the development process, stands as

AI Agent Testing: Revolutionizing DevOps Reliability

In an era where software deployment cycles are shrinking to mere hours, the integration of AI agents into DevOps pipelines has emerged as a game-changer, promising unparalleled efficiency but also introducing complex challenges that must be addressed. Picture a critical production system crashing at midnight due to an AI agent’s unchecked token consumption, costing thousands in API overuse before anyone