Japan Unveils Plans for Fugaku Next, a Groundbreaking Zetta-Scale Supercomputer

Japan has announced its plans for the successor to the renowned Fugaku supercomputer, which is currently the world’s fourth-fastest according to Top500.org. This new system, named Fugaku Next, is set to be a Zetta-scale supercomputer, boasting an astounding performance of 1,000 exaFLOPS. To put this in perspective, this power level is a thousand times more potent than the current AMD-powered Frontier system. The ambitious project, revealed by Japan’s Ministry of Education, Culture, Sports, Science, and Technology (MEXT), will come with a hefty price tag of over $750 million and is expected to be operational by 2030.

The development of Fugaku Next is spearheaded by RIKEN and Fujitsu, driven by the urgent need to bolster AI-driven scientific research in Japan. This colossal Zetta-scale machine aims to address the growing computational demands of such research. In theory, a computer of this scale would require the energy output of 21 nuclear reactors, highlighting the significant power considerations involved. However, advancements in semiconductor manufacturing, led by giants such as TSMC, Intel, and Samsung, are moving towards the creation of 2nm transistors. These technological strides may make the enormous computational power of a Zetta-scale machine achievable within the projected timeframe.

Implications for Global High-Performance Computing

Japan has announced plans for Fugaku Next, the successor to its current Fugaku supercomputer, which ranks as the world’s fourth-fastest according to Top500.org. Fugaku Next aims to be a Zetta-scale supercomputer, offering an incredible performance of 1,000 exaFLOPS—making it a thousand times more powerful than the AMD-powered Frontier system. Announced by Japan’s Ministry of Education, Culture, Sports, Science, and Technology (MEXT), the ambitious project will cost over $750 million and is expected to be operational by 2030.

The development of Fugaku Next is being led by RIKEN and Fujitsu, aiming to significantly enhance AI-driven scientific research in Japan. This enormous Zetta-scale supercomputer is designed to meet the growing computational needs of advanced research initiatives. To give a sense of scale, a machine of this magnitude would theoretically require the energy output of 21 nuclear reactors. However, ongoing advancements in semiconductor technology by companies like TSMC, Intel, and Samsung, especially towards 2nm transistors, suggest that achieving this computational power could be feasible within the projected timeline.

Explore more

Hotels Must Rethink Recruitment to Attract Top Talent

With decades of experience guiding organizations through technological and cultural transformations, HRTech expert Ling-Yi Tsai has become a vital voice in the conversation around modern talent strategy. Specializing in the integration of analytics and technology across the entire employee lifecycle, she offers a sharp, data-driven perspective on why the hospitality industry’s traditional recruitment models are failing and what it takes

Trend Analysis: AI Disruption in Hiring

In a profound paradox of the modern era, the very artificial intelligence designed to connect and streamline our world is now systematically eroding the foundational trust of the hiring process. The advent of powerful generative AI has rendered traditional application materials, such as resumes and cover letters, into increasingly unreliable artifacts, compelling a fundamental and costly overhaul of recruitment methodologies.

Is AI Sparking a Hiring Race to the Bottom?

Submitting over 900 job applications only to face a wall of algorithmic silence has become an unsettlingly common narrative in the modern professional’s quest for employment. This staggering volume, once a sign of extreme dedication, now highlights a fundamental shift in the hiring landscape. The proliferation of Artificial Intelligence in recruitment, designed to streamline and simplify the process, has instead

Is Intel About to Reclaim the Laptop Crown?

A recently surfaced benchmark report has sent tremors through the tech industry, suggesting the long-established narrative of AMD’s mobile CPU dominance might be on the verge of a dramatic rewrite. For several product generations, the market has followed a predictable script: AMD’s Ryzen processors set the bar for performance and efficiency, while Intel worked diligently to close the gap. Now,

Trend Analysis: Hybrid Chiplet Processors

The long-reigning era of the monolithic chip, where a processor’s entire identity was etched into a single piece of silicon, is definitively drawing to a close, making way for a future built on modular, interconnected components. This fundamental shift toward hybrid chiplet technology represents more than just a new design philosophy; it is the industry’s strategic answer to the slowing