HoMEDUCS Project Develops Efficient Cooling Technologies for Modular Data Centers

Modular data centers have gained popularity in recent years due to their ability to be rapidly deployed to remote areas and provide a supplement to traditional brick-and-mortar data centers. However, cooling remains a significant challenge in these compact spaces. To address this issue, the U.S. Department of Energy’s ARPA-E launched the COOLERCHIPS program in May, funding projects aimed at developing highly efficient and reliable cooling technologies for data centers. One such project is the HoMEDUCS project, which focuses on extracting and dissipating heat from computer chips into the ambient air.

The Significance of Cooling in Modular Data Centers

Cooling is of paramount importance in modular data centers due to their tight spaces and the intense heat generated by the high-performance computer chips they house. Liquid-based immersion cooling or evaporative cooling techniques are commonly employed to ensure efficient heat dissipation and prevent overheating.

The COOLERCHIPS Program

In line with the growing demand for efficient cooling technologies in data centers, the COOLERCHIPS program aims to fund projects like HoMEDUCS that can significantly reduce energy consumption and improve the overall reliability of cooling systems.

The HoMEDUCS Project

The HoMEDUCS project focuses on the direct liquid cooling technique to extract and dissipate heat from computer chips. By utilizing a unique cold plate design and innovative heat exchangers, HoMEDUCS reduces energy requirements and eliminates the need for compressors or chillers.

Driving Heat Away from the Chip

HoMEDUCS harnesses the temperature difference between the computer chip and the ambient air to efficiently drive heat away from the chip. This approach maximizes the cooling potential while minimizing energy consumption.

Incorporating Radiative Cooling Panels

To further enhance cooling efficiency, the HoMEDUCS project incorporates radiative cooling panels on the roof of the module. These panels facilitate cooling of the liquid below ambient temperatures without the need for electricity, adding an additional layer of energy savings.

Projected Energy Consumption and Water Requirements

The cooling design of HoMEDUCS is projected to use less than 5% of a data center’s total power consumption. This significant reduction in energy consumption not only results in cost savings but also decreases the strain on energy grids. Additionally, HoMEDUCS’s cooling system does not require water, eliminating the potential environmental impact associated with traditional cooling methods.

Broader Applications and Goals

While the primary focus of the COOLERCHIPS program is data center cooling, its broader goal is to develop technologies that can be applied to other electronic systems as well. For example, the efficient cooling techniques developed through this program can also be used in power conversion systems for solar and wind turbines, further reducing energy consumption and enhancing overall system performance.

Impact on Modular Data Centers

Modular data centers stand to benefit greatly from the technologies developed through the COOLERCHIPS program. Their ability to quickly adapt and utilize efficient cooling systems will enable them to operate more efficiently and meet the growing demands of data storage and processing.

The HoMEDUCS project, funded by the ARPA-E COOLERCHIPS program, is at the forefront of developing highly efficient cooling technologies for modular data centers. By utilizing direct liquid cooling, unique cold plate designs, innovative heat exchangers, and incorporating radiative cooling panels, HoMEDUCS aims to significantly reduce energy consumption and eliminate the need for water. The technologies developed through the COOLERCHIPS program will not only benefit modular data centers but also have broader applications in other electronic systems, contributing to a more sustainable and energy-conscious future.

Explore more

How AI Agents Work: Types, Uses, Vendors, and Future

From Scripted Bots to Autonomous Coworkers: Why AI Agents Matter Now Everyday workflows are quietly shifting from predictable point-and-click forms into fluid conversations with software that listens, reasons, and takes action across tools without being micromanaged at every step. The momentum behind this change did not arise overnight; organizations spent years automating tasks inside rigid templates only to find that

AI Coding Agents – Review

A Surge Meets Old Lessons Executives promised dazzling efficiency and cost savings by letting AI write most of the code while humans merely supervise, but the past months told a sharper story about speed without discipline turning routine mistakes into outages, leaks, and public postmortems that no board wants to read. Enthusiasm did not vanish; it matured. The technology accelerated

Open Loop Transit Payments – Review

A Fare Without Friction Millions of riders today expect to tap a bank card or phone at a gate, glide through in under half a second, and trust that the system will sort out the best fare later without standing in line for a special card. That expectation sits at the heart of Mastercard’s enhanced open-loop transit solution, which replaces

OVHcloud Unveils 3-AZ Berlin Region for Sovereign EU Cloud

A Launch That Raised The Stakes Under the TV tower’s gaze, a new cloud region stitched across Berlin quietly went live with three availability zones spaced by dozens of kilometers, each with its own power, cooling, and networking, and it recalibrated how European institutions plan for resilience and control. The design read like a utility blueprint rather than a tech

Can the Energy Transition Keep Pace With the AI Boom?

Introduction Power bills are rising even as cleaner energy gains ground because AI’s electricity hunger is rewriting the grid’s playbook and compressing timelines once thought generous. The collision of surging digital demand, sharpened corporate strategy, and evolving policy has turned the energy transition from a marathon into a series of sprints. Data centers, crypto mines, and electrifying freight now press