Tailor-Made Connectivity: Exploring Network Slicing and Microslicing for Quality of Service in Private Wireless Networks

Private wireless networks have rapidly infiltrated enterprise networks, offering to revolutionize businesses of all sizes. Traditional wireless technologies, such as Wi-Fi, have often failed to address long-standing reliability issues, leading to a new era of network-dependent devices and applications that companies rely on to run their business operations. This has made the need for deterministic wireless connectivity non-negotiable, leading to the emergence of new techniques, such as network slicing and microslicing, to improve the quality of service (QoS) on private wireless networks.

Reliability Problems in Conventional Wireless Technologies

Enterprises have long relied on conventional wireless technologies, such as Wi-Fi, to provide connectivity to their network-dependent devices and applications. However, these technologies have often struggled to meet the stringent requirements of many enterprise users. Issues such as network coverage, capacity, and reliability have plagued Wi-Fi and other wireless technologies for years, hindering the performance of many mission-critical enterprise applications.

The Growing Importance of Network-Dependent Devices and Applications

As more companies become reliant on network-dependent devices and applications, the need for highly reliable and stable wireless connections has never been more significant. These network-dependent devices and applications are the backbone of many businesses today, from point-of-sale systems to inventory management and more. Without a stable and reliable wireless connection, businesses can grind to a halt.

The Need for Deterministic Wireless Connectivity

This is where private wireless networks come in. Private wireless networks are designed to provide highly deterministic wireless connectivity to enterprise users by using dedicated frequency bands, reducing interference and improving network reliability. In addition, private wireless networks enable companies to deploy network architectures that are customized to their specific requirements, leading to better overall performance of network-dependent devices and applications.

Techniques to Improve Quality of Service (QoS) on Private Wireless Networks

One of the key benefits of private wireless networks is the ability to improve the quality of service (QoS) provided to enterprise users. This is achieved through the use of techniques such as network slicing and microslicing, which allow enterprises to dynamically enforce specific latency, packet loss, and throughput requirements demanded by each use case.

Network Slicing: Dividing a public cellular physical network into multiple logical networks

Network slicing is a method of dividing a public cellular physical network into multiple logical networks or “slices” that can be optimized for different use cases, applications, or customers. This approach allows enterprises to allocate dedicated resources to each slice, such as bandwidth or radio coverage, to meet specific requirements. This leads to greater overall network efficiency and flexibility, as different slices can be optimized for different use cases or customer needs.

Microslicing: A Novel Approach for 5G LANs Operated by Enterprises

Microslicing is a novel approach designed for so-called “5G LANs” that are owned and operated by the enterprise, much like traditional wireless LANs but using 4G or 5G radio technology for user access. Unlike network slicing, microslicing uses intelligent software embedded within the network to dynamically allocate resources based on the unique requirements of each use case. This approach can be highly effective in improving overall network efficiency as enterprises can ensure that resources are being used effectively without wasting valuable network capacity.

Intelligent software embedded within the network

The use of intelligent software embedded within the network is a key feature of both network slicing and micro-slicing approaches. This software is responsible for dividing the network resources into logical slices, as well as dynamically allocating resources based on the changing demands of each slice. This can help companies achieve much greater efficiency and flexibility in their networks, leading to greater overall performance.

Dynamic enforceability of specific requirements

Another key benefit of network slicing and microslicing is the ability to dynamically enforce specific requirements demanded by each use case. For example, some network-dependent devices or applications may require high bandwidth, while others may require low latency or high packet delivery rates. By utilizing network slicing and microslicing, enterprises can ensure that each use case is allocated the appropriate resources, leading to improved overall performance.

The Power of Choice: Selecting the Best Approach for Unique Requirements and Environments

Finally, it is important to note that enterprises have the ability to choose between network slicing and microslicing, based on their unique requirements and environments. Each approach has its own advantages and disadvantages, and companies must carefully consider their network requirements and the resources available to them before making a decision. However, by selecting the right approach, enterprises can achieve highly deterministic wireless connectivity, leading to the improved overall performance of network-dependent devices and applications.

In conclusion, private wireless networks are quickly becoming a game-changer for enterprise networks, providing highly deterministic wireless connectivity to meet the requirements of today’s network-dependent devices and applications. Techniques such as network slicing and microslicing are helping businesses to improve overall performance and efficiency by providing quality of service (QoS) and dynamic allocation of resources based on specific use case requirements. By selecting the right approach for their unique requirements and environments, companies can achieve the highest level of performance and reliability in their networks.

Explore more

Agentic AI Redefines the Software Development Lifecycle

The quiet hum of servers executing tasks once performed by entire teams of developers now underpins the modern software engineering landscape, signaling a fundamental and irreversible shift in how digital products are conceived and built. The emergence of Agentic AI Workflows represents a significant advancement in the software development sector, moving far beyond the simple code-completion tools of the past.

Is AI Creating a Hidden DevOps Crisis?

The sophisticated artificial intelligence that powers real-time recommendations and autonomous systems is placing an unprecedented strain on the very DevOps foundations built to support it, revealing a silent but escalating crisis. As organizations race to deploy increasingly complex AI and machine learning models, they are discovering that the conventional, component-focused practices that served them well in the past are fundamentally

Agentic AI in Banking – Review

The vast majority of a bank’s operational costs are hidden within complex, multi-step workflows that have long resisted traditional automation efforts, a challenge now being met by a new generation of intelligent systems. Agentic and multiagent Artificial Intelligence represent a significant advancement in the banking sector, poised to fundamentally reshape operations. This review will explore the evolution of this technology,

Cooling Job Market Requires a New Talent Strategy

The once-frenzied rhythm of the American job market has slowed to a quiet, steady hum, signaling a profound and lasting transformation that demands an entirely new approach to organizational leadership and talent management. For human resources leaders accustomed to the high-stakes war for talent, the current landscape presents a different, more subtle challenge. The cooldown is not a momentary pause

What If You Hired for Potential, Not Pedigree?

In an increasingly dynamic business landscape, the long-standing practice of using traditional credentials like university degrees and linear career histories as primary hiring benchmarks is proving to be a fundamentally flawed predictor of job success. A more powerful and predictive model is rapidly gaining momentum, one that shifts the focus from a candidate’s past pedigree to their present capabilities and