Service Assurance in Cellular Networks: The Key to Success in Emerging Applications

As technology advances, the need for reliable, high-speed cellular networks becomes increasingly critical. With the advent of emerging applications like IoT, autonomous vehicles, and virtual reality, service assurance has become essential to ensure the success of these complex use cases. Service assurance refers to the ability to monitor network performance, identify anomalies, and take corrective actions. In this article, we will explore the importance of service assurance in cellular networks, the role of orchestration and automation, Zero Touch Network and Service Management, SLA parameters, closed-loop service assurance, and the need to set up a proper service assurance infrastructure.

Importance of Service Assurance in Cellular Networks

A critical factor for the success of emerging applications, service assurance ensures that customers receive reliable and high-quality services in real-time. Complete visibility into the network and automated recovery in case of customer-impacting issues is essential to meet customers’ demanding expectations and achieve the desired monetization from a service provider’s point of view. Moreover, private LTE/5G networks typically have stringent service assurance requirements, necessitating a high degree of monitoring and control.

The role of orchestration and automation in service assurance

Orchestration and automation play a crucial role in service assurance. Automating network operations and service assurance procedures can help ensure the network meets the required service levels. Automated workflows and closed-loop automation frameworks make service assurance more efficient and accurate.

Zero-touch network and service management

Standardization bodies are working towards defining the requirements and procedures for Zero Touch Network and Service Management. A Zero Touch Network is a network that requires little or no human intervention to operate optimally. It involves automation, machine learning, and artificial intelligence in various aspects of network management, including service assurance. The automation systems orchestrate the network operations automatically, and the system is capable of self-healing, self-optimization, and self-configuration.

The definition of Service Assurance in Telecommunications refers to the set of activities and practices that are employed in order to ensure that communication services provided to customers are executed in a reliable and consistent manner, meet the required quality standards, and are continuously monitored and optimized to minimize service disruptions and faults. Service Assurance also involves providing end-to-end visibility and control of all network components and applications, identifying and resolving issues promptly, and ensuring that customer satisfaction is maintained to the highest possible level.

Service assurance refers to the ability to monitor a network’s performance, identify anomalies, and report them or take corrective actions. In telecommunications, service assurance is a critical component of the network planning and management process. With increasingly complex network architectures and new application demands, service assurance has become even more essential in ensuring customer satisfaction.

Defining SLA Parameters

The parameters of the Service Level Agreement (SLA) need to be defined in terms of measurable metrics/KPIs that are specific, measurable, achievable, relevant, and time-bound. For instance, the network reliability score, network availability score, and throughput statistics can all be considered as measurable metrics/KPIs for ensuring cellular service assurance.

Closed-loop service assurance

Closed-loop service assurance is a comprehensive approach that encompasses everything from network monitoring to optimization and insights from the RAN (Radio Access Network) to the Core. For closed-loop service assurance, we need both a powerful NWDAF (Network Data Analytics Function) and a containerized service assurance solution. NWDAF provides data analytics and Machine Learning/Optimization capabilities, while the containerized service assurance solution provides network monitoring, optimization, and insights from the RAN to the Core. With closed-loop automation frameworks based on advanced AI/ML (Artificial Intelligence/Machine Learning) techniques, we can achieve a completely ZERO-TOUCH NETWORK.

In conclusion, we can say that setting up the proper service assurance infrastructure for measurable KPIs and frameworks to monitor them and take preventive and corrective actions is the real key to success in cellular networks. Service assurance is essential to emerging applications like IoT, autonomous vehicles, and virtual reality, providing customers with reliable and high-quality services in real-time. With the advent of new technological advancements, service assurance is becoming even more critical in ensuring customer satisfaction and achieving service monetization. By leveraging advanced automation and orchestration techniques along with intelligent AI/ML algorithms, we can achieve a completely autonomous Zero Touch Network that requires little or no human intervention to operate optimally.

Explore more

How AI Agents Work: Types, Uses, Vendors, and Future

From Scripted Bots to Autonomous Coworkers: Why AI Agents Matter Now Everyday workflows are quietly shifting from predictable point-and-click forms into fluid conversations with software that listens, reasons, and takes action across tools without being micromanaged at every step. The momentum behind this change did not arise overnight; organizations spent years automating tasks inside rigid templates only to find that

AI Coding Agents – Review

A Surge Meets Old Lessons Executives promised dazzling efficiency and cost savings by letting AI write most of the code while humans merely supervise, but the past months told a sharper story about speed without discipline turning routine mistakes into outages, leaks, and public postmortems that no board wants to read. Enthusiasm did not vanish; it matured. The technology accelerated

Open Loop Transit Payments – Review

A Fare Without Friction Millions of riders today expect to tap a bank card or phone at a gate, glide through in under half a second, and trust that the system will sort out the best fare later without standing in line for a special card. That expectation sits at the heart of Mastercard’s enhanced open-loop transit solution, which replaces

OVHcloud Unveils 3-AZ Berlin Region for Sovereign EU Cloud

A Launch That Raised The Stakes Under the TV tower’s gaze, a new cloud region stitched across Berlin quietly went live with three availability zones spaced by dozens of kilometers, each with its own power, cooling, and networking, and it recalibrated how European institutions plan for resilience and control. The design read like a utility blueprint rather than a tech

Can the Energy Transition Keep Pace With the AI Boom?

Introduction Power bills are rising even as cleaner energy gains ground because AI’s electricity hunger is rewriting the grid’s playbook and compressing timelines once thought generous. The collision of surging digital demand, sharpened corporate strategy, and evolving policy has turned the energy transition from a marathon into a series of sprints. Data centers, crypto mines, and electrifying freight now press