Scientists Develop New Technique to Enhance Industrial Robot Control

In modern industries, computer-based control systems are widely used to operate production systems. These systems allow for precise and efficient control of large-scale production processes. Among the most important components of these control systems are industrial robots that perform specific tasks in batches, such as clothing production, computer chips, or baked goods. The control techniques used for these robots are critical to the efficiency and productivity of the entire manufacturing process.

Control techniques for industrial robots

The commonly used control technique for industrial robots is iterative learning control (ILC). ILC is a feedback control method that uses past performance data to improve control performance over time. This method is especially suitable for repetitive tasks, such as those performed in batch production.

Examples of industries using ILCs

The use of ILC is widespread in various industries such as the semiconductor industry, food manufacturing, and textile industry. In semiconductor manufacturing, robots are used for wafer fabrication, where small variations in the production process can cause significant yield losses. In the textile industry, ILC is used to control the tension of textile fabric during production to ensure the quality of the final product.

Limitations of current ILC systems

Despite the widespread use of ILC, current systems have two significant limitations. The first limitation is that they rely on a learning strategy called the proportional-type update rule (PTUR). The PTUR has been the dominant approach used to improve the performance of ILC systems. However, in situations that require high precision, the PTUR can be unsatisfactory. The second limitation is related to the ability of the ILC system to converge to the desired output. Existing methods for improving the convergence rate often turn out to be unsatisfactory in situations that require high precision.

There has been a breakthrough in the ILC system

In a recent breakthrough, a group of scientists has proposed a new technique that uses the fractional power update rule (FPUR) to enhance the performance potential of single-input-single-output linear ILC systems. The researchers conducted experiments on a robot that was used to drill holes in a metal surface. They compared the performance of the traditional PTUR with the new FPUR. The results showed that the FPUR method outperformed the PTUR method in terms of both convergence rate and precision.

Nonlinear update methods for learning and achieving desired output

The scientists investigated approaches beyond PTUR that utilized nonlinear update methods to learn and reach the desired output. Nonlinear update methods allow the control system to adapt to the changing dynamics of the system being controlled. The researchers found that this approach could significantly improve the effectiveness of industrial control systems.

Development of a new FPUR method

The team developed a new FPUR method inspired by newer finite-time control (FTC) and terminal sliding mode control (TSMC) strategies. These strategies are nonlinear control techniques used to improve the transient response and robustness of control systems. The new FPUR method uses a fractional term for updating, leading to a faster convergence rate.

Traditional PTUR uses a linear term for the tracking error to update the control input. On the other hand, FPUR uses a fractional term for updating. This fractional term can adapt to the changing dynamics of the system, leading to faster convergence and higher precision.

The proposed technique could potentially be used in other repetitive systems such as autonomous vehicles, unmanned aerial vehicles, and rehabilitation robots. The FPUR method has the potential to significantly improve the performance of these systems. This study has demonstrated, for the first time, the use of the FPUR for ILC in single-input-single-output linear systems.

The use of ILC is critical to the efficiency and productivity of modern industries. However, the limitations of current ILC systems have led to the development of new control techniques such as the FPUR. The FPUR is a nonlinear update method that improves the performance potential of single-input-single-output linear ILC systems. This development could have significant implications for future advancements in industrial control systems.

Explore more

Embedded Payments Carry Unseen Risks for Business

With us today is Nikolai Braiden, a distinguished FinTech expert and an early pioneer in blockchain technology. He has built a career advising startups on navigating the complex digital landscape, championing technology’s power to innovate financial systems. We’re diving deep into the often-oversold dream of embedded payments, exploring the operational pitfalls that can turn a promising revenue stream into a

Why a Modern WMS Is the Key to ERP Success

With a deep background in applying artificial intelligence and blockchain to real-world business challenges, Dominic Jainy has become a leading voice in supply chain modernization. He specializes in bridging the gap between legacy systems and next-generation automation, helping UK businesses navigate the complexities of digital transformation. Today, he shares his insights on why a modern Warehouse Management System (WMS) is

How Do You Customize Views in Dynamics 365?

Introduction Unlocking Efficiency with Custom Views Navigating the vast sea of information within a customer relationship management system can often feel overwhelming, leading to decreased productivity and missed opportunities. Dynamics 365 offers a powerful solution to this data overload by allowing users to customize views, transforming a cluttered interface into a streamlined, role-specific dashboard. A well-organized view system is not

Review of D365 Storage Capacity Report

In the intricate ecosystem of Microsoft Dynamics 365, unchecked data accumulation from transactions, system logs, and attachments can quietly erode system performance and trigger unforeseen licensing costs. As business operations scale, the challenge of managing this digital footprint becomes a critical priority, demanding a tool that offers clarity and control over enterprise data. The D365 Storage Capacity Report, housed within

CFOs Take Control as Cloud Costs Threaten Profits

In boardrooms across the technology sector, a once-celebrated operational advantage has quietly morphed into a significant financial liability that now directly challenges corporate profitability and demands urgent executive intervention. What began as a tool for agility and innovation has evolved into an economic force of its own, prompting a fundamental shift in how businesses manage their digital infrastructure. This evolution