Scientists Develop New Technique to Enhance Industrial Robot Control

In modern industries, computer-based control systems are widely used to operate production systems. These systems allow for precise and efficient control of large-scale production processes. Among the most important components of these control systems are industrial robots that perform specific tasks in batches, such as clothing production, computer chips, or baked goods. The control techniques used for these robots are critical to the efficiency and productivity of the entire manufacturing process.

Control techniques for industrial robots

The commonly used control technique for industrial robots is iterative learning control (ILC). ILC is a feedback control method that uses past performance data to improve control performance over time. This method is especially suitable for repetitive tasks, such as those performed in batch production.

Examples of industries using ILCs

The use of ILC is widespread in various industries such as the semiconductor industry, food manufacturing, and textile industry. In semiconductor manufacturing, robots are used for wafer fabrication, where small variations in the production process can cause significant yield losses. In the textile industry, ILC is used to control the tension of textile fabric during production to ensure the quality of the final product.

Limitations of current ILC systems

Despite the widespread use of ILC, current systems have two significant limitations. The first limitation is that they rely on a learning strategy called the proportional-type update rule (PTUR). The PTUR has been the dominant approach used to improve the performance of ILC systems. However, in situations that require high precision, the PTUR can be unsatisfactory. The second limitation is related to the ability of the ILC system to converge to the desired output. Existing methods for improving the convergence rate often turn out to be unsatisfactory in situations that require high precision.

There has been a breakthrough in the ILC system

In a recent breakthrough, a group of scientists has proposed a new technique that uses the fractional power update rule (FPUR) to enhance the performance potential of single-input-single-output linear ILC systems. The researchers conducted experiments on a robot that was used to drill holes in a metal surface. They compared the performance of the traditional PTUR with the new FPUR. The results showed that the FPUR method outperformed the PTUR method in terms of both convergence rate and precision.

Nonlinear update methods for learning and achieving desired output

The scientists investigated approaches beyond PTUR that utilized nonlinear update methods to learn and reach the desired output. Nonlinear update methods allow the control system to adapt to the changing dynamics of the system being controlled. The researchers found that this approach could significantly improve the effectiveness of industrial control systems.

Development of a new FPUR method

The team developed a new FPUR method inspired by newer finite-time control (FTC) and terminal sliding mode control (TSMC) strategies. These strategies are nonlinear control techniques used to improve the transient response and robustness of control systems. The new FPUR method uses a fractional term for updating, leading to a faster convergence rate.

Traditional PTUR uses a linear term for the tracking error to update the control input. On the other hand, FPUR uses a fractional term for updating. This fractional term can adapt to the changing dynamics of the system, leading to faster convergence and higher precision.

The proposed technique could potentially be used in other repetitive systems such as autonomous vehicles, unmanned aerial vehicles, and rehabilitation robots. The FPUR method has the potential to significantly improve the performance of these systems. This study has demonstrated, for the first time, the use of the FPUR for ILC in single-input-single-output linear systems.

The use of ILC is critical to the efficiency and productivity of modern industries. However, the limitations of current ILC systems have led to the development of new control techniques such as the FPUR. The FPUR is a nonlinear update method that improves the performance potential of single-input-single-output linear ILC systems. This development could have significant implications for future advancements in industrial control systems.

Explore more

Agency Management Software – Review

Setting the Stage for Modern Agency Challenges Imagine a bustling marketing agency juggling dozens of client campaigns, each with tight deadlines, intricate multi-channel strategies, and high expectations for measurable results. In today’s fast-paced digital landscape, marketing teams face mounting pressure to deliver flawless execution while maintaining profitability and client satisfaction. A staggering number of agencies report inefficiencies due to fragmented

Edge AI Decentralization – Review

Imagine a world where sensitive data, such as a patient’s medical records, never leaves the hospital’s local systems, yet still benefits from cutting-edge artificial intelligence analysis, making privacy and efficiency a reality. This scenario is no longer a distant dream but a tangible reality thanks to Edge AI decentralization. As data privacy concerns mount and the demand for real-time processing

SparkyLinux 8.0: A Lightweight Alternative to Windows 11

This how-to guide aims to help users transition from Windows 10 to SparkyLinux 8.0, a lightweight and versatile operating system, as an alternative to upgrading to Windows 11. With Windows 10 reaching its end of support, many are left searching for secure and efficient solutions that don’t demand high-end hardware or force unwanted design changes. This guide provides step-by-step instructions

Mastering Vendor Relationships for Network Managers

Imagine a network manager facing a critical system outage at midnight, with an entire organization’s operations hanging in the balance, only to find that the vendor on call is unresponsive or unprepared. This scenario underscores the vital importance of strong vendor relationships in network management, where the right partnership can mean the difference between swift resolution and prolonged downtime. Vendors

Immigration Crackdowns Disrupt IT Talent Management

What happens when the engine of America’s tech dominance—its access to global IT talent—grinds to a halt under the weight of stringent immigration policies? Picture a Silicon Valley startup, on the brink of a groundbreaking AI launch, suddenly unable to hire the data scientist who holds the key to its success because of a visa denial. This scenario is no