Scientists Develop New Technique to Enhance Industrial Robot Control

In modern industries, computer-based control systems are widely used to operate production systems. These systems allow for precise and efficient control of large-scale production processes. Among the most important components of these control systems are industrial robots that perform specific tasks in batches, such as clothing production, computer chips, or baked goods. The control techniques used for these robots are critical to the efficiency and productivity of the entire manufacturing process.

Control techniques for industrial robots

The commonly used control technique for industrial robots is iterative learning control (ILC). ILC is a feedback control method that uses past performance data to improve control performance over time. This method is especially suitable for repetitive tasks, such as those performed in batch production.

Examples of industries using ILCs

The use of ILC is widespread in various industries such as the semiconductor industry, food manufacturing, and textile industry. In semiconductor manufacturing, robots are used for wafer fabrication, where small variations in the production process can cause significant yield losses. In the textile industry, ILC is used to control the tension of textile fabric during production to ensure the quality of the final product.

Limitations of current ILC systems

Despite the widespread use of ILC, current systems have two significant limitations. The first limitation is that they rely on a learning strategy called the proportional-type update rule (PTUR). The PTUR has been the dominant approach used to improve the performance of ILC systems. However, in situations that require high precision, the PTUR can be unsatisfactory. The second limitation is related to the ability of the ILC system to converge to the desired output. Existing methods for improving the convergence rate often turn out to be unsatisfactory in situations that require high precision.

There has been a breakthrough in the ILC system

In a recent breakthrough, a group of scientists has proposed a new technique that uses the fractional power update rule (FPUR) to enhance the performance potential of single-input-single-output linear ILC systems. The researchers conducted experiments on a robot that was used to drill holes in a metal surface. They compared the performance of the traditional PTUR with the new FPUR. The results showed that the FPUR method outperformed the PTUR method in terms of both convergence rate and precision.

Nonlinear update methods for learning and achieving desired output

The scientists investigated approaches beyond PTUR that utilized nonlinear update methods to learn and reach the desired output. Nonlinear update methods allow the control system to adapt to the changing dynamics of the system being controlled. The researchers found that this approach could significantly improve the effectiveness of industrial control systems.

Development of a new FPUR method

The team developed a new FPUR method inspired by newer finite-time control (FTC) and terminal sliding mode control (TSMC) strategies. These strategies are nonlinear control techniques used to improve the transient response and robustness of control systems. The new FPUR method uses a fractional term for updating, leading to a faster convergence rate.

Traditional PTUR uses a linear term for the tracking error to update the control input. On the other hand, FPUR uses a fractional term for updating. This fractional term can adapt to the changing dynamics of the system, leading to faster convergence and higher precision.

The proposed technique could potentially be used in other repetitive systems such as autonomous vehicles, unmanned aerial vehicles, and rehabilitation robots. The FPUR method has the potential to significantly improve the performance of these systems. This study has demonstrated, for the first time, the use of the FPUR for ILC in single-input-single-output linear systems.

The use of ILC is critical to the efficiency and productivity of modern industries. However, the limitations of current ILC systems have led to the development of new control techniques such as the FPUR. The FPUR is a nonlinear update method that improves the performance potential of single-input-single-output linear ILC systems. This development could have significant implications for future advancements in industrial control systems.

Explore more

Can Stablecoins Balance Privacy and Crime Prevention?

The emergence of stablecoins in the cryptocurrency landscape has introduced a crucial dilemma between safeguarding user privacy and mitigating financial crime. Recent incidents involving Tether’s ability to freeze funds linked to illicit activities underscore the tension between these objectives. Amid these complexities, stablecoins continue to attract attention as both reliable transactional instruments and potential tools for crime prevention, prompting a

AI-Driven Payment Routing – Review

In a world where every business transaction relies heavily on speed and accuracy, AI-driven payment routing emerges as a groundbreaking solution. Designed to amplify global payment authorization rates, this technology optimizes transaction conversions and minimizes costs, catalyzing new dynamics in digital finance. By harnessing the prowess of artificial intelligence, the model leverages advanced analytics to choose the best acquirer paths,

How Are AI Agents Revolutionizing SME Finance Solutions?

Can AI agents reshape the financial landscape for small and medium-sized enterprises (SMEs) in such a short time that it seems almost overnight? Recent advancements suggest this is not just a possibility but a burgeoning reality. According to the latest reports, AI adoption in financial services has increased by 60% in recent years, highlighting a rapid transformation. Imagine an SME

Trend Analysis: Artificial Emotional Intelligence in CX

In the rapidly evolving landscape of customer engagement, one of the most groundbreaking innovations is artificial emotional intelligence (AEI), a subset of artificial intelligence (AI) designed to perceive and engage with human emotions. As businesses strive to deliver highly personalized and emotionally resonant experiences, the adoption of AEI transforms the customer service landscape, offering new opportunities for connection and differentiation.

Will Telemetry Data Boost Windows 11 Performance?

The Telemetry Question: Could It Be the Answer to PC Performance Woes? If your Windows 11 has left you questioning its performance, you’re not alone. Many users are somewhat disappointed by computers not performing as expected, leading to frustrations that linger even after upgrading from Windows 10. One proposed solution is Microsoft’s initiative to leverage telemetry data, an approach that