Samsung’s Upcoming 1.4nm Process Node: Boosting Power and Efficiency in Future Chips

As technology continues to advance at a rapid pace, manufacturers in the semiconductor industry constantly strive to enhance chip performance and efficiency. Samsung, a leading player in the field, is gearing up to introduce its upcoming 1.4nm process node, offering promising improvements. This article delves into the details of Samsung’s roadmap, the potential benefits of its future chips, and the competition it seeks to establish with TSMC.

Samsung’s roadmap to compete with TSMC

To stay ahead in the race of semiconductor manufacturing, Samsung has developed a comprehensive roadmap that aims to achieve parity with its biggest rival, Taiwan Semiconductor Manufacturing Company (TSMC). Jeong Gi-Tae, Vice President of Samsung Foundry, recently shared insights into this strategic plan. By aligning their goals with TSMC, Samsung aims to showcase its capabilities on a global scale.

Current Offerings: Samsung’s SF5 Manufacturing

Currently, Samsung’s foundry offers the 5nm manufacturing process, known as the SF5, providing a solution for various chips. Although the SF5 process has garnered positive reviews in terms of power efficiency and performance, Samsung is determined to go further and push the boundaries of technology.

Future Plans: Introducing the SF3 Platform

In the coming year, Samsung plans to launch the SF3 platform, introducing the market to 3nm chips with a range of options. This platform will enable customers to enjoy the benefits of enhanced power and performance. However, it’s important to note that the immediate availability of 3nm Samsung chips might be limited initially due to the complexities involved in scaling down the manufacturing process.

Upgrading to SF3P and introduction of SF2 chips

As part of its roadmap, Samsung aims to upgrade the 3nm process to a performance-tuned version called SF3P. This upgrade, planned for 2025, will optimize the process to further enhance chip performance. Alongside the SF3P upgrade, Samsung also plans to introduce the production of 2nm (SF2) chips, representing another leap forward in semiconductor technology.

Unlocking the 1.4nm Process: Samsung’s GAA Technology

Samsung’s most groundbreaking achievement is projected for 2027 when the company’s patented Gate-All-Around (GAA) technology will come into its own, enabling the unlocking of the 1.4nm process node (SF1.4). This technology revolutionizes the transistor structure by utilizing multiple nanosheets per transistor. By doing so, the 1.4nm chips offer superior current control and speed, leading to a significant boost in overall chip performance.

Limitations of silicon-based processors

At 1.4nm, Samsung will be on the brink of reaching the theoretical limit of silicon-based processors. As chip sizes continue to shrink, new challenges arise due to the physical limitations of silicon. The 1.4nm processors represent a remarkable feat in terms of miniaturization and efficiency; however, alternate approaches may be needed in the future to overcome the limitations posed by silicon.

Samsung’s upcoming 1.4nm process node signifies a major milestone in the semiconductor industry. By meticulously charting its roadmap and striving for parity with TSMC, Samsung is positioning itself as a strong competitor. The introduction of the SF3 platform, the upgrade to SF3P, and the anticipated arrival of 2nm chips all contribute to Samsung’s commitment to innovation and continuous improvement. With the unlocking of the 1.4nm process, powered by GAA technology, Samsung is poised to offer chips with unparalleled power and efficiency. As the theoretical limit of silicon-based processors is reached, it is exciting to anticipate the next wave of advancements that will shape the future of chip technology.

Explore more

What If Data Engineers Stopped Fighting Fires?

The global push toward artificial intelligence has placed an unprecedented demand on the architects of modern data infrastructure, yet a silent crisis of inefficiency often traps these crucial experts in a relentless cycle of reactive problem-solving. Data engineers, the individuals tasked with building and maintaining the digital pipelines that fuel every major business initiative, are increasingly bogged down by the

What Is Shaping the Future of Data Engineering?

Beyond the Pipeline: Data Engineering’s Strategic Evolution Data engineering has quietly evolved from a back-office function focused on building simple data pipelines into the strategic backbone of the modern enterprise. Once defined by Extract, Transform, Load (ETL) jobs that moved data into rigid warehouses, the field is now at the epicenter of innovation, powering everything from real-time analytics and AI-driven

Trend Analysis: Agentic AI Infrastructure

From dazzling demonstrations of autonomous task completion to the ambitious roadmaps of enterprise software, Agentic AI promises a fundamental revolution in how humans interact with technology. This wave of innovation, however, is revealing a critical vulnerability hidden beneath the surface of sophisticated models and clever prompt design: the data infrastructure that powers these autonomous systems. An emerging trend is now

Embedded Finance and BaaS – Review

The checkout button on a favorite shopping app and the instant payment to a gig worker are no longer simple transactions; they are the visible endpoints of a profound architectural shift remaking the financial industry from the inside out. The rise of Embedded Finance and Banking-as-a-Service (BaaS) represents a significant advancement in the financial services sector. This review will explore

Trend Analysis: Embedded Finance

Financial services are quietly dissolving into the digital fabric of everyday life, becoming an invisible yet essential component of non-financial applications from ride-sharing platforms to retail loyalty programs. This integration represents far more than a simple convenience; it is a fundamental re-architecting of the financial industry. At its core, this shift is transforming bank balance sheets from static pools of