Samsung’s Upcoming 1.4nm Process Node: Boosting Power and Efficiency in Future Chips

As technology continues to advance at a rapid pace, manufacturers in the semiconductor industry constantly strive to enhance chip performance and efficiency. Samsung, a leading player in the field, is gearing up to introduce its upcoming 1.4nm process node, offering promising improvements. This article delves into the details of Samsung’s roadmap, the potential benefits of its future chips, and the competition it seeks to establish with TSMC.

Samsung’s roadmap to compete with TSMC

To stay ahead in the race of semiconductor manufacturing, Samsung has developed a comprehensive roadmap that aims to achieve parity with its biggest rival, Taiwan Semiconductor Manufacturing Company (TSMC). Jeong Gi-Tae, Vice President of Samsung Foundry, recently shared insights into this strategic plan. By aligning their goals with TSMC, Samsung aims to showcase its capabilities on a global scale.

Current Offerings: Samsung’s SF5 Manufacturing

Currently, Samsung’s foundry offers the 5nm manufacturing process, known as the SF5, providing a solution for various chips. Although the SF5 process has garnered positive reviews in terms of power efficiency and performance, Samsung is determined to go further and push the boundaries of technology.

Future Plans: Introducing the SF3 Platform

In the coming year, Samsung plans to launch the SF3 platform, introducing the market to 3nm chips with a range of options. This platform will enable customers to enjoy the benefits of enhanced power and performance. However, it’s important to note that the immediate availability of 3nm Samsung chips might be limited initially due to the complexities involved in scaling down the manufacturing process.

Upgrading to SF3P and introduction of SF2 chips

As part of its roadmap, Samsung aims to upgrade the 3nm process to a performance-tuned version called SF3P. This upgrade, planned for 2025, will optimize the process to further enhance chip performance. Alongside the SF3P upgrade, Samsung also plans to introduce the production of 2nm (SF2) chips, representing another leap forward in semiconductor technology.

Unlocking the 1.4nm Process: Samsung’s GAA Technology

Samsung’s most groundbreaking achievement is projected for 2027 when the company’s patented Gate-All-Around (GAA) technology will come into its own, enabling the unlocking of the 1.4nm process node (SF1.4). This technology revolutionizes the transistor structure by utilizing multiple nanosheets per transistor. By doing so, the 1.4nm chips offer superior current control and speed, leading to a significant boost in overall chip performance.

Limitations of silicon-based processors

At 1.4nm, Samsung will be on the brink of reaching the theoretical limit of silicon-based processors. As chip sizes continue to shrink, new challenges arise due to the physical limitations of silicon. The 1.4nm processors represent a remarkable feat in terms of miniaturization and efficiency; however, alternate approaches may be needed in the future to overcome the limitations posed by silicon.

Samsung’s upcoming 1.4nm process node signifies a major milestone in the semiconductor industry. By meticulously charting its roadmap and striving for parity with TSMC, Samsung is positioning itself as a strong competitor. The introduction of the SF3 platform, the upgrade to SF3P, and the anticipated arrival of 2nm chips all contribute to Samsung’s commitment to innovation and continuous improvement. With the unlocking of the 1.4nm process, powered by GAA technology, Samsung is poised to offer chips with unparalleled power and efficiency. As the theoretical limit of silicon-based processors is reached, it is exciting to anticipate the next wave of advancements that will shape the future of chip technology.

Explore more

How AI Agents Work: Types, Uses, Vendors, and Future

From Scripted Bots to Autonomous Coworkers: Why AI Agents Matter Now Everyday workflows are quietly shifting from predictable point-and-click forms into fluid conversations with software that listens, reasons, and takes action across tools without being micromanaged at every step. The momentum behind this change did not arise overnight; organizations spent years automating tasks inside rigid templates only to find that

AI Coding Agents – Review

A Surge Meets Old Lessons Executives promised dazzling efficiency and cost savings by letting AI write most of the code while humans merely supervise, but the past months told a sharper story about speed without discipline turning routine mistakes into outages, leaks, and public postmortems that no board wants to read. Enthusiasm did not vanish; it matured. The technology accelerated

Open Loop Transit Payments – Review

A Fare Without Friction Millions of riders today expect to tap a bank card or phone at a gate, glide through in under half a second, and trust that the system will sort out the best fare later without standing in line for a special card. That expectation sits at the heart of Mastercard’s enhanced open-loop transit solution, which replaces

OVHcloud Unveils 3-AZ Berlin Region for Sovereign EU Cloud

A Launch That Raised The Stakes Under the TV tower’s gaze, a new cloud region stitched across Berlin quietly went live with three availability zones spaced by dozens of kilometers, each with its own power, cooling, and networking, and it recalibrated how European institutions plan for resilience and control. The design read like a utility blueprint rather than a tech

Can the Energy Transition Keep Pace With the AI Boom?

Introduction Power bills are rising even as cleaner energy gains ground because AI’s electricity hunger is rewriting the grid’s playbook and compressing timelines once thought generous. The collision of surging digital demand, sharpened corporate strategy, and evolving policy has turned the energy transition from a marathon into a series of sprints. Data centers, crypto mines, and electrifying freight now press