Revolutionizing Fiber Composite Material Production with Non-Destructive Automated Detection: The FiberRadar Project

The Fraunhofer Institute for High Frequency Physics and Radar Techniques FHR has developed an innovative method that can automatically and non-destructively monitor and identify defects in fiber composite materials during the production process. This capability was previously impossible, and it is particularly significant in the production of wind turbine rotor blades due to the potential for defects to cause undulation or incorrect and twisted fiber orientation in the material.

Defects in Fiber Composite Materials

Fiber composite materials, used primarily in wind turbine rotor blades, consist mostly of glass fiber-reinforced plastics. If they are not appropriately laid out, defects may occur, which could impact the proper functioning of the blades. Therefore, it is crucial to detect defects during the manufacturing of fiber composite materials.

The FiberRadar Project was a collaboration between Fraunhofer FHR, Ruhr University Bochum, FH Aachen University of Applied Sciences, and Aeroconcept GmbH. The project’s objective was to develop a measurement system that could enable the control of manufactured components with unprecedented precision, exceeding what was previously possible.

The FiberRadar project researchers have achieved a significant breakthrough in non-destructive and automated detection by developing a method for checking the alignment of the lower glass fiber layers. For the first time, a millimeter-wave scanning system comprising a radar, a fully polarimetric robot, and imaging software can identify defects during the production process without damaging the product.

The Radar System

The radar system used in the scanning process sends and receives signals in two polarizations, providing high-resolution imaging of fiber structures, thus making it easier to detect any defects in deeper layers. The use of radar in scanning individual layers enables researchers to identify anomalies in fiber orientation and non-destructively examine the entire material volume.

Refraction compensation is a process that enhances the quality of images used by a scanning system. It is particularly important in reducing unwanted refraction effects in deeper layers, and plays a crucial role in detecting defects in the material.

Failure to detect anomalies in fiber orientation can result in defects in the final product, affecting its performance. However, by utilizing radar technology to scan individual layers, researchers can non-destructively identify anomalies in fiber orientation and examine the entire material volume, thereby ensuring high-quality final product.

The FiberRadar project has developed a measurement system that allows for precise production and control of fiber composite materials, surpassing the levels of accuracy that were achievable previously. By adopting this production method, manufacturers can guarantee superior quality of their final product, ensuring it functions as intended.

In conclusion, the FiberRadar project by the Fraunhofer Institute for High Frequency Physics and Radar Techniques FHR is revolutionizing the production of fiber composite materials, particularly in the manufacturing of wind turbine rotor blades. The project’s non-destructive and automated detection method can efficiently detect any defects during the production process, resulting in a final product that is of high quality and functions as expected.

Explore more

Is Fairer Car Insurance Worth Triple The Cost?

A High-Stakes Overhaul: The Push for Social Justice in Auto Insurance In Kazakhstan, a bold legislative proposal is forcing a nationwide conversation about the true cost of fairness. Lawmakers are advocating to double the financial compensation for victims of traffic accidents, a move praised as a long-overdue step toward social justice. However, this push for greater protection comes with a

Insurance Is the Key to Unlocking Climate Finance

While the global community celebrated a milestone as climate-aligned investments reached $1.9 trillion in 2023, this figure starkly contrasts with the immense financial requirements needed to address the climate crisis, particularly in the world’s most vulnerable regions. Emerging markets and developing economies (EMDEs) are on the front lines, facing the harshest impacts of climate change with the fewest financial resources

The Future of Content Is a Battle for Trust, Not Attention

In a digital landscape overflowing with algorithmically generated answers, the paradox of our time is the proliferation of information coinciding with the erosion of certainty. The foundational challenge for creators, publishers, and consumers is rapidly evolving from the frantic scramble to capture fleeting attention to the more profound and sustainable pursuit of earning and maintaining trust. As artificial intelligence becomes

Use Analytics to Prove Your Content’s ROI

In a world saturated with content, the pressure on marketers to prove their value has never been higher. It’s no longer enough to create beautiful things; you have to demonstrate their impact on the bottom line. This is where Aisha Amaira thrives. As a MarTech expert who has built a career at the intersection of customer data platforms and marketing

What Really Makes a Senior Data Scientist?

In a world where AI can write code, the true mark of a senior data scientist is no longer about syntax, but strategy. Dominic Jainy has spent his career observing the patterns that separate junior practitioners from senior architects of data-driven solutions. He argues that the most impactful work happens long before the first line of code is written and