Revolutionizing Chip Technology: Samsung Reveals Backside Power Delivery Method for Future Chips

In a groundbreaking announcement at the VLSI Symposium held in Japan, Samsung Electronics unveiled its latest innovation in power delivery technology. The new method, known as Backside Power Delivery Network (BSPDN), promises to revolutionize chip design by improving area utilization and power delivery efficiency. Samsung’s disclosure marks a significant milestone in the industry, as they become the first company to reveal the metrics and results of this pioneering technique.

Samsung’s Disclosure at the VLSI Symposium

At the highly regarded VLSI Symposium, Samsung Electronics took the opportunity to illustrate the benefits of the BSPDN method. By presenting detailed metrics and data, the company showcased the remarkable achievements made in both area reduction and power delivery enhancement.

Area reduction achieved

One of the key highlights of Samsung’s BSPDN innovation is the impressive area reduction it offers. By implementing this method, the company was able to reduce the required chip area by a staggering 14.8% compared to the traditional approach. This reduction provides Samsung with the opportunity to utilize the freed-up space to incorporate additional components, such as transistors, driving overall performance gains.

Performance benefits of area reduction

The area reduction achieved through BSPDN has far-reaching implications for chip performance. With more space available on the die, chip designers can integrate additional components, improving functionality and delivering faster processing speeds. This enhancement opens up new possibilities for innovation in a wide range of applications, from mobile devices to high-performance computing.

Wire length reduction and improved power delivery

In addition to area reduction, Samsung’s BSPDN method also yields significant benefits through wire length reduction. By optimizing the power delivery network on the backside of the chip, the company achieved a commendable wire length reduction of 9.2%. This reduction translates into decreased resistance and improved power delivery efficiency, ensuring stable and reliable operation of the semiconductor device.

Samsung leads the way in disclosure

Samsung’s disclosure of the BSPDN method at the VLSI Symposium demonstrates its leadership in pushing the boundaries of chip design and manufacturing. By sharing its findings, the company contributes to the collective knowledge of the industry and fosters further innovation in power delivery techniques.

Intel’s Similar PowerVia Method and Integration Plans

Not long after Samsung’s revelation, Intel also disclosed its own power delivery innovation called “PowerVia.” Intel intends to incorporate this method into its Intel 20A nodes, achieving an impressive 90% chip utilization rate. The company has already announced plans to utilize PowerVia in their upcoming Arrow Lake CPUs, slated for release in 2024. Intel’s utilization of this methodology emphasizes its significance and potential for industry-wide adoption.

Samsung’s Future Plans for BSPDN Integration

While Samsung’s disclosure of the BSPDN method showcases its remarkable capabilities, the company has not yet revealed its concrete plans for integrating this technology into its future processes. However, based on the information available, it is expected that next-generation processes will gradually incorporate BSPDN after Intel’s initial implementation.

Samsung’s unveiling of the BSPDN method at the VLSI Symposium has ushered in a new era of power delivery innovation in chip design. The remarkable achievements in area reduction and power delivery enhancement present numerous benefits, including increased performance, improved power efficiency, and the potential for incorporating more features into semiconductor devices — all contributing to a faster and more advanced technological landscape. As the industry eagerly awaits the adoption of BSPDN and similar advancements, it is clear that Samsung and Intel’s breakthroughs lay the foundation for a promising future in microelectronics.

Explore more

Trend Analysis: Agentic AI in Data Engineering

The modern enterprise is drowning in a deluge of data yet simultaneously thirsting for actionable insights, a paradox born from the persistent bottleneck of manual and time-consuming data preparation. As organizations accumulate vast digital reserves, the human-led processes required to clean, structure, and ready this data for analysis have become a significant drag on innovation. Into this challenging landscape emerges

Why Does AI Unite Marketing and Data Engineering?

The organizational chart of a modern company often tells a story of separation, with clear lines dividing functions and responsibilities, but the customer’s journey tells a story of seamless unity, demanding a single, coherent conversation with the brand. For years, the gap between the teams that manage customer data and the teams that manage customer engagement has widened, creating friction

Trend Analysis: Intelligent Data Architecture

The paradox at the heart of modern healthcare is that while artificial intelligence can predict patient mortality with stunning accuracy, its life-saving potential is often neutralized by the very systems designed to manage patient data. While AI has already proven its ability to save lives and streamline clinical workflows, its progress is critically stalled. The true revolution in healthcare is

Can AI Fix a Broken Customer Experience by 2026?

The promise of an AI-driven revolution in customer service has echoed through boardrooms for years, yet the average consumer’s experience often remains a frustrating maze of automated dead ends and unresolved issues. We find ourselves in 2026 at a critical inflection point, where the immense hype surrounding artificial intelligence collides with the stubborn realities of tight budgets, deep-seated operational flaws,

Trend Analysis: AI-Driven Customer Experience

The once-distant promise of artificial intelligence creating truly seamless and intuitive customer interactions has now become the established benchmark for business success. From an experimental technology to a strategic imperative, Artificial Intelligence is fundamentally reshaping the customer experience (CX) landscape. As businesses move beyond the initial phase of basic automation, the focus is shifting decisively toward leveraging AI to build