Revolutionizing Chip Technology: Samsung Reveals Backside Power Delivery Method for Future Chips

In a groundbreaking announcement at the VLSI Symposium held in Japan, Samsung Electronics unveiled its latest innovation in power delivery technology. The new method, known as Backside Power Delivery Network (BSPDN), promises to revolutionize chip design by improving area utilization and power delivery efficiency. Samsung’s disclosure marks a significant milestone in the industry, as they become the first company to reveal the metrics and results of this pioneering technique.

Samsung’s Disclosure at the VLSI Symposium

At the highly regarded VLSI Symposium, Samsung Electronics took the opportunity to illustrate the benefits of the BSPDN method. By presenting detailed metrics and data, the company showcased the remarkable achievements made in both area reduction and power delivery enhancement.

Area reduction achieved

One of the key highlights of Samsung’s BSPDN innovation is the impressive area reduction it offers. By implementing this method, the company was able to reduce the required chip area by a staggering 14.8% compared to the traditional approach. This reduction provides Samsung with the opportunity to utilize the freed-up space to incorporate additional components, such as transistors, driving overall performance gains.

Performance benefits of area reduction

The area reduction achieved through BSPDN has far-reaching implications for chip performance. With more space available on the die, chip designers can integrate additional components, improving functionality and delivering faster processing speeds. This enhancement opens up new possibilities for innovation in a wide range of applications, from mobile devices to high-performance computing.

Wire length reduction and improved power delivery

In addition to area reduction, Samsung’s BSPDN method also yields significant benefits through wire length reduction. By optimizing the power delivery network on the backside of the chip, the company achieved a commendable wire length reduction of 9.2%. This reduction translates into decreased resistance and improved power delivery efficiency, ensuring stable and reliable operation of the semiconductor device.

Samsung leads the way in disclosure

Samsung’s disclosure of the BSPDN method at the VLSI Symposium demonstrates its leadership in pushing the boundaries of chip design and manufacturing. By sharing its findings, the company contributes to the collective knowledge of the industry and fosters further innovation in power delivery techniques.

Intel’s Similar PowerVia Method and Integration Plans

Not long after Samsung’s revelation, Intel also disclosed its own power delivery innovation called “PowerVia.” Intel intends to incorporate this method into its Intel 20A nodes, achieving an impressive 90% chip utilization rate. The company has already announced plans to utilize PowerVia in their upcoming Arrow Lake CPUs, slated for release in 2024. Intel’s utilization of this methodology emphasizes its significance and potential for industry-wide adoption.

Samsung’s Future Plans for BSPDN Integration

While Samsung’s disclosure of the BSPDN method showcases its remarkable capabilities, the company has not yet revealed its concrete plans for integrating this technology into its future processes. However, based on the information available, it is expected that next-generation processes will gradually incorporate BSPDN after Intel’s initial implementation.

Samsung’s unveiling of the BSPDN method at the VLSI Symposium has ushered in a new era of power delivery innovation in chip design. The remarkable achievements in area reduction and power delivery enhancement present numerous benefits, including increased performance, improved power efficiency, and the potential for incorporating more features into semiconductor devices — all contributing to a faster and more advanced technological landscape. As the industry eagerly awaits the adoption of BSPDN and similar advancements, it is clear that Samsung and Intel’s breakthroughs lay the foundation for a promising future in microelectronics.

Explore more

Hotels Must Rethink Recruitment to Attract Top Talent

With decades of experience guiding organizations through technological and cultural transformations, HRTech expert Ling-Yi Tsai has become a vital voice in the conversation around modern talent strategy. Specializing in the integration of analytics and technology across the entire employee lifecycle, she offers a sharp, data-driven perspective on why the hospitality industry’s traditional recruitment models are failing and what it takes

Trend Analysis: AI Disruption in Hiring

In a profound paradox of the modern era, the very artificial intelligence designed to connect and streamline our world is now systematically eroding the foundational trust of the hiring process. The advent of powerful generative AI has rendered traditional application materials, such as resumes and cover letters, into increasingly unreliable artifacts, compelling a fundamental and costly overhaul of recruitment methodologies.

Is AI Sparking a Hiring Race to the Bottom?

Submitting over 900 job applications only to face a wall of algorithmic silence has become an unsettlingly common narrative in the modern professional’s quest for employment. This staggering volume, once a sign of extreme dedication, now highlights a fundamental shift in the hiring landscape. The proliferation of Artificial Intelligence in recruitment, designed to streamline and simplify the process, has instead

Is Intel About to Reclaim the Laptop Crown?

A recently surfaced benchmark report has sent tremors through the tech industry, suggesting the long-established narrative of AMD’s mobile CPU dominance might be on the verge of a dramatic rewrite. For several product generations, the market has followed a predictable script: AMD’s Ryzen processors set the bar for performance and efficiency, while Intel worked diligently to close the gap. Now,

Trend Analysis: Hybrid Chiplet Processors

The long-reigning era of the monolithic chip, where a processor’s entire identity was etched into a single piece of silicon, is definitively drawing to a close, making way for a future built on modular, interconnected components. This fundamental shift toward hybrid chiplet technology represents more than just a new design philosophy; it is the industry’s strategic answer to the slowing