NIST Develops Strategies to Combat Cyber-Threats against AI-Powered Chatbots and Self-Driving Cars

The US National Institute of Standards and Technology (NIST) has recently taken a significant leap towards developing strategies to defend against cyber threats that specifically target AI-powered chatbots and self-driving cars. As technological advancements continue to shape our world, ensuring the security and integrity of artificial intelligence (AI) systems is of paramount importance. To address this concern, NIST has released a comprehensive paper on January 4, 2024, which establishes a standardized approach to characterizing and defending against cyberattacks on AI.

NIST’s Paper: A Taxonomy and Terminology of Attacks and Mitigations

In an exemplary display of collaboration between academia and industry, NIST has teamed up with renowned experts to co-author a groundbreaking paper titled “Adversarial Machine Learning: A Taxonomy and Terminology of Attacks and Mitigations.” This paper serves as a foundational resource, providing a structured framework to understand and combat cyber threats directed towards AI systems.

Taxonomy: Categorizing Adversarial Machine Learning (AML) Attacks

NIST’s taxonomy categorizes AML attacks into two distinct categories: attacks targeting “predictive AI” systems and attacks targeting “generative AI” systems. Under the umbrella of “predictive AI,” NIST includes a sub-category called “generative AI,” which encompasses generative adversarial networks, generative pre-trained transformers, and diffusion models.

Attacks on Predictive AI Systems

Within the realm of predictive AI systems, the NIST report identifies three primary types of adversarial attacks: evasion attacks, poisoning attacks, and privacy attacks.

Evasion attacks aim to generate adversarial examples, which are intentionally designed to deceive an AI system and alter the classification of testing samples. These attacks exploit vulnerabilities in the AI system’s decision-making process, manipulating it to provide incorrect and potentially harmful outputs.

Unlike evasion attacks that target the testing phase, poisoning attacks occur during the training stage of an AI algorithm. Adversaries gain control over a relatively small number of training samples, injecting malicious data that can compromise the AI system’s performance and undermine its reliability.

Privacy attacks focus on extracting sensitive information about the AI model or the data on which it was trained. Adversaries aim to compromise the privacy and confidentiality of the AI system, potentially leading to significant consequences, such as data breaches or unauthorized access.

Attacks on Generative AI Systems

AML attacks targeting generative AI systems fall under the category of abuse attacks. These attacks involve the deliberate insertion of incorrect or malicious information into the AI system, leading it to generate inaccurate outputs. By strategically manipulating the learning process of generative AI models, adversaries can compromise the integrity of the system’s outputs, leading to potentially severe consequences in various domains such as content generation, voice recognition, or image manipulation.

NIST’s groundbreaking paper on adversarial machine learning attacks is a significant step towards creating a comprehensive defense against cyber threats targeting AI systems. By providing a taxonomy and terminology of attacks, NIST equips researchers, developers, and policymakers with a foundational understanding of the threats faced by AI-powered systems. This standardized approach empowers the cybersecurity community to develop robust and effective mitigation strategies, ensuring the continued advancement and adoption of AI technology while safeguarding against malicious attacks.

As the landscape of AI-powered technologies expands, NIST’s efforts will play a crucial role in establishing trust, reliability, and security within these systems. By staying vigilant and proactive in addressing emerging threats, we can pave the way for a future where AI-driven innovations thrive, benefiting our society in countless ways while mitigating the risks associated with cyber-attacks.

Explore more

Trend Analysis: AI in Real Estate

Navigating the real estate market has long been synonymous with staggering costs, opaque processes, and a reliance on commission-based intermediaries that can consume a significant portion of a property’s value. This traditional framework is now facing a profound disruption from artificial intelligence, a technological force empowering consumers with unprecedented levels of control, transparency, and financial savings. As the industry stands

Insurtech Digital Platforms – Review

The silent drain on an insurer’s profitability often goes unnoticed, buried within the complex and aging architecture of legacy systems that impede growth and alienate a digitally native customer base. Insurtech digital platforms represent a significant advancement in the insurance sector, offering a clear path away from these outdated constraints. This review will explore the evolution of this technology from

Trend Analysis: Insurance Operational Control

The relentless pursuit of market share that has defined the insurance landscape for years has finally met its reckoning, forcing the industry to confront a new reality where operational discipline is the true measure of strength. After a prolonged period of chasing aggressive, unrestrained growth, 2025 has marked a fundamental pivot. The market is now shifting away from a “growth-at-all-costs”

AI Grading Tools Offer Both Promise and Peril

The familiar scrawl of a teacher’s red pen, once the definitive symbol of academic feedback, is steadily being replaced by the silent, instantaneous judgment of an algorithm. From the red-inked margins of yesteryear to the instant feedback of today, the landscape of academic assessment is undergoing a seismic shift. As educators grapple with growing class sizes and the demand for

Legacy Digital Twin vs. Industry 4.0 Digital Twin: A Comparative Analysis

The promise of a perfect digital replica—a tool that could mirror every gear turn and temperature fluctuation of a physical asset—is no longer a distant vision but a bifurcated reality with two distinct evolutionary paths. On one side stands the legacy digital twin, a powerful but often isolated marvel of engineering simulation. On the other is its successor, the Industry