Multiple Security Vulnerabilities Found in UEFI TCP/IP Protocol Stack – PixieFail

In a recent development, a number of security vulnerabilities have been discovered in the TCP/IP network protocol stack of an open-source reference implementation of the UEFI (Unified Extensible Firmware Interface) specification. These flaws, collectively known as PixieFail, have the potential to cause significant harm, including remote code execution, denial of service (DoS) attacks, DNS cache poisoning, and data theft. This article will delve into the intricacies of these vulnerabilities, their impact, and the affected UEFI firmware vendors. Additionally, we will explore the specifics of the TianoCore EFI Development Kit II (EDK II) and the NetworkPkg TCP/IP stack, the role of the NetworkPkg in the Preboot eXecution Environment (PXE) stage, and the details of the individual vulnerabilities.

Overview of PixieFail Vulnerabilities

PixieFail encompasses multiple security vulnerabilities that compromise the integrity and security of the UEFI firmware. These vulnerabilities can be exploited at both the IPv4 and IPv6 layers. By leveraging overflow bugs, out-of-bounds reads, infinite loops, and a weak pseudorandom number generator (PRNG), attackers can execute remote code, initiate DoS attacks, conduct DNS cache poisoning, or extract sensitive information. The severity and exploitability of these vulnerabilities depend on the specific firmware build and the default PXE boot configuration.

Affected UEFI Firmware Vendors

The vulnerabilities discovered in the TCP/IP protocol stack impact UEFI firmware from several reputable vendors, including AMI, Intel, Insyde, and Phoenix Technologies. These vulnerabilities require immediate attention and action from these vendors to prevent their exploitation by malicious actors.

The TianoCore EFI Development Kit II (EDK II) and NetworkPkg play crucial roles in the functioning of UEFI firmware. Within the EDK II, the NetworkPkg TCP/IP stack aids in the management tasks during the initial Preboot eXecution Environment (PXE) stage. It is during this stage that vulnerabilities in the TCP/IP protocol stack exist.

Specific Vulnerabilities and Exploitation Possibilities

The PixieFail vulnerabilities include several distinct weaknesses, such as buffer overflow, integer underflow, and predictable TCP Initial Sequence Numbers. Each of these vulnerabilities poses risks that could lead to various forms of exploitation, including remote code execution, DoS attacks, DNS cache poisoning, and data theft. The exploitation possibilities exist at both the IPv4 and IPv6 layers, making it imperative for firmware vendors to address these vulnerabilities promptly.

The impact and exploitability factors of the PixieFail vulnerabilities vary depending on the specific firmware build and the default PXE boot configuration. Firmware builds that have implemented additional security measures and have strict boot configurations are less likely to be vulnerable. However, given the potential consequences of exploitation, it is crucial for all firmware vendors, regardless of their build and configuration, to take proactive measures in mitigating these vulnerabilities.

The discovery of the PixieFail vulnerabilities in the TCP/IP network protocol stack of the UEFI firmware highlights the importance of maintaining the security of firmware implementations. Firmware vendors, including AMI, Intel, Insyde, and Phoenix Technologies, must take immediate action to address these vulnerabilities and release patches or updates to protect their users from potential attacks. Additionally, it is advisable for system administrators and end-users to ensure that they regularly apply firmware updates and follow best security practices to minimize their exposure to these security risks. By addressing the vulnerabilities promptly and implementing necessary security measures, the UEFI firmware ecosystem can ensure the safety and integrity of their systems.

Explore more

Maryland Data Center Boom Sparks Local Backlash

A quiet 42-acre plot in a Maryland suburb, once home to a local inn, is now at the center of a digital revolution that residents never asked for, promising immense power but revealing very few secrets. This site in Woodlawn is ground zero for a debate raging across the state, pitting the promise of high-tech infrastructure against the concerns of

Trend Analysis: Next-Generation Cyber Threats

The close of 2025 brings into sharp focus a fundamental transformation in cyber security, where the primary battleground has decisively shifted from compromising networks to manipulating the very logic and identity that underpins our increasingly automated digital world. As sophisticated AI and autonomous systems have moved from experimental technology to mainstream deployment, the nature and scale of cyber risk have

Ransomware Attack Cripples Romanian Water Authority

An entire nation’s water supply became the target of a digital siege when cybercriminals turned a standard computer security feature into a sophisticated weapon against Romania’s essential infrastructure. The attack, disclosed on December 20, targeted the National Administration “Apele Române” (Romanian Waters), the agency responsible for managing the country’s water resources. This incident serves as a stark reminder of the

African Cybercrime Crackdown Leads to 574 Arrests

Introduction A sweeping month-long dragnet across 19 African nations has dismantled intricate cybercriminal networks, showcasing the formidable power of unified, cross-border law enforcement in the digital age. This landmark effort, known as “Operation Sentinel,” represents a significant step forward in the global fight against online financial crimes that exploit vulnerabilities in our increasingly connected world. This article serves to answer

Zero-Click Exploits Redefined Cybersecurity in 2025

With an extensive background in artificial intelligence and machine learning, Dominic Jainy has a unique vantage point on the evolving cyber threat landscape. His work offers critical insights into how the very technologies designed for convenience and efficiency are being turned into potent weapons. In this discussion, we explore the seismic shifts of 2025, a year defined by the industrialization