Intel Showcases Advancements in 3D Stacked CMOS Transistors and Backside Power Delivery at IEDM 2023

At the 2023 IEEE International Electron Devices Meeting (IEDM), Intel researchers showcased advancements in 3D stacked CMOS transistors combined with backside power and direct backside contacts. These breakthroughs in transistor architecture technology are crucial for further scaling and improved performance. In this article, we will explore the research presented by Intel’s Components Research group and their efforts to extend Moore’s Law through innovative engineering.

Intel’s Components Research Group and Engineering Boundaries

Intel’s Components Research group has consistently pushed the boundaries of engineering by exploring new possibilities in transistor technology. This group has focused on stacking transistors and taking backside power to the next level, enabling more transistor scaling and improved performance. Additionally, they have successfully demonstrated the integration of transistors made of different materials on the same wafer, opening up new possibilities for advanced transistor design.

Process Technology Roadmap and Innovation

Intel has recently announced its process technology roadmap, showcasing its innovation in continued scaling. These advancements, including PowerVia backside power, glass substrates for advanced packaging, and Foveros Direct, have originated from the work done in the Components Research group. These innovations are expected to be in production within this decade, further supporting efficient scaling and power delivery.

Key R&D Areas for Efficiently Stacking Transistors

To continue scaling efficiently, researchers have identified key areas for research and development. These areas focus on optimizing transistor stacking and utilizing backside power and backside contacts. By making advancements in these areas, significant progress can be made in transistor architecture technology, resulting in improved performance and scaling.

Intel’s Efforts to Extend Moore’s Law

Intel is dedicated to extending Moore’s Law, which states that the number of transistors on a chip doubles approximately every two years. In order to achieve this, Intel is working on improving backside power delivery and utilizing novel 2D channel materials. By leveraging these advancements, Intel aims to reach a trillion transistors on a package by 2030, enabling powerful and efficient computing.

Industry First: Vertical Stacking of CFETs

One of the most significant advancements presented by Intel at IEDM 2023 is the ability to vertically stack complementary field-effect transistors (CFETs) at a scaled gate pitch down to 60nm. This achievement marks an industry first, demonstrating Intel’s ability to push the limits of transistor design and fabrication. Vertical stacking opens up new possibilities for higher transistor density and improved performance.

Manufacturing Readiness of PowerVia

Intel’s PowerVia, a technology enabling backside power delivery, is expected to be manufacturing-ready in 2024. This implementation of backside power delivery is a significant milestone as it will enhance the efficiency and performance of future semiconductor devices. PowerVia will enable more efficient power delivery, reducing power consumption, and enabling improved device performance.

Extending and Scaling Backside Power Delivery

Intel’s Components Research group has identified paths to extend and scale backside power delivery beyond PowerVia. These innovations are key to further improving power delivery efficiency and enabling more advanced device scaling. The group is focusing on developing key process advances required to enable extended backside power delivery, setting the stage for future technological advancements.

Enablement of Area-Efficient Device Stacking

In addition to optimizing backside power delivery, Intel is also exploring the use of backside contacts and other novel vertical interconnects to enable area-efficient device stacking. By utilizing these interconnects, Intel can create more compact and efficient devices, leading to improved performance and greater transistor density. This research demonstrates Intel’s commitment to innovation in transistor architecture and efficient power delivery.

Intel’s showcase of advancements in 3D stacked CMOS transistors and backside power delivery at IEDM 2023 reaffirms their commitment to driving technology forward. As highlighted by their research and engineering breakthroughs in Components Research, Intel is continuously pushing the boundaries of innovation to support Moore’s Law and enable further scaling and efficient power delivery. The discoveries made at IEDM 2023 pave the way for exciting possibilities in future computing technologies.

Explore more

Agentic AI Redefines the Software Development Lifecycle

The quiet hum of servers executing tasks once performed by entire teams of developers now underpins the modern software engineering landscape, signaling a fundamental and irreversible shift in how digital products are conceived and built. The emergence of Agentic AI Workflows represents a significant advancement in the software development sector, moving far beyond the simple code-completion tools of the past.

Is AI Creating a Hidden DevOps Crisis?

The sophisticated artificial intelligence that powers real-time recommendations and autonomous systems is placing an unprecedented strain on the very DevOps foundations built to support it, revealing a silent but escalating crisis. As organizations race to deploy increasingly complex AI and machine learning models, they are discovering that the conventional, component-focused practices that served them well in the past are fundamentally

Agentic AI in Banking – Review

The vast majority of a bank’s operational costs are hidden within complex, multi-step workflows that have long resisted traditional automation efforts, a challenge now being met by a new generation of intelligent systems. Agentic and multiagent Artificial Intelligence represent a significant advancement in the banking sector, poised to fundamentally reshape operations. This review will explore the evolution of this technology,

Cooling Job Market Requires a New Talent Strategy

The once-frenzied rhythm of the American job market has slowed to a quiet, steady hum, signaling a profound and lasting transformation that demands an entirely new approach to organizational leadership and talent management. For human resources leaders accustomed to the high-stakes war for talent, the current landscape presents a different, more subtle challenge. The cooldown is not a momentary pause

What If You Hired for Potential, Not Pedigree?

In an increasingly dynamic business landscape, the long-standing practice of using traditional credentials like university degrees and linear career histories as primary hiring benchmarks is proving to be a fundamentally flawed predictor of job success. A more powerful and predictive model is rapidly gaining momentum, one that shifts the focus from a candidate’s past pedigree to their present capabilities and