Inscriptions on Blockchains: How Parallelized EVMs Could Alleviate Performance Issues

In this digital age, “inscriptions” have emerged as a unique form of collectibles, leveraging the power of blockchain technology to write data into the “calldata” or “witness” fields of a transaction. However, this innovation has not been without its challenges. The influx of inscriptions has caused degraded performance and, in some cases, even crashes on several blockchain networks. In this article, we explore a potential solution to this problem and delve into the concept of parallelized Ethereum Virtual Machines (EVMs).

Proposal of using parallelized Ethereum Virtual Machines (EVMs) to solve transaction spam

Brendan Farmer, co-founder of Polygon, suggests that parallelized EVMs could effectively tackle the issue of transaction spam. By running multiple EVMs in parallel, unrelated transactions can be processed simultaneously, significantly boosting the throughput of blockchains and safeguarding their performance. This promising approach holds the potential to address the challenges posed by spam transactions and enhance the overall efficiency of blockchain networks.

Evolution of inscriptions from Bitcoin to Ethereum sidechains and layer-2s

While inscriptions originated on the Bitcoin network, Ethereum quickly became a hub for their proliferation, especially through the utilization of sidechains and layer-2 solutions. These secondary blockchain networks were established to alleviate congestion on the main Ethereum network and enable faster and cheaper inscription minting.

Cheap minting method of inscriptions and its consequences

Unlike conventional NFT minting processes, Inscriptions introduced a cost-effective way of creating collectibles by leveraging the “calldata” field of the EVM-based networks. While this approach dramatically reduced the expenses associated with minting, it also led to an increased influx of inscription transactions. Consequently, high fees and network instability became prevalent, hindering the smooth operation of blockchain networks.

How parallelized EVMs improve blockchain performance

Parallelized EVMs enable unrelated transactions to be processed simultaneously, effectively increasing the throughput of blockchains. This enhanced processing capacity allows networks to “localize gas fees to areas that contend with each other,” optimizing the allocation of resources and enhancing overall performance.

Implementation plans for parallelized EVMs on Polygon

The implementation of gas fee localization through parallelized EVMs is one of the key goals for the Polygon network. While not yet fully implemented, Polygon aims to leverage parallelization alongside layer-2 ecosystems to alleviate performance issues and enhance efficiency.

Parallelization and layer-2 ecosystems for performance enhancement

Parallelization, coupled with the adoption of layer-2 solutions, is being actively pursued across multiple blockchain networks, including Polygon. With the widespread implementation of parallelized EVMs and layer-2 ecosystems, stakeholders anticipate significant improvements in scalability, transaction speed, and cost-effectiveness.

Performance improvement achieved and expected on Polygon

The Polygon team has already witnessed a noteworthy 1.6x improvement in performance with the implementation of the “Block-STM” solution. Furthermore, they anticipate achieving a remarkable 2x improvement in processing blocks, further solidifying the benefits of parallelized EVMs in addressing transaction-related challenges and optimizing network functionality.

Inscriptions have emerged as a revolutionary form of collectibles in the blockchain space, but their rise has also posed significant challenges for network performance. However, the innovation of parallelized EVMs provides a potential solution to these issues. By running multiple EVMs in parallel and optimizing the utilization of network resources, blockchain networks can enhance scalability, reduce fees, and improve transaction speed. As blockchain technology continues to evolve, parallelization and layer-2 ecosystems offer exciting prospects for improved performance across diverse blockchain networks.

Explore more

How Erica Redefines Virtual Banking with AI Innovation?

In an era where digital transformation is reshaping every corner of the financial sector, Bank of America’s virtual assistant, Erica, emerges as a trailblazer in redefining customer engagement through artificial intelligence. Since its debut several years ago, Erica has not only adapted to the evolving demands of banking but has also set a new benchmark for what virtual assistants can

MoonPay’s Leadership Shift Could Redefine Crypto Payroll

In an era where digital currencies are reshaping financial landscapes, the integration of cryptocurrency into payroll systems stands as a bold frontier for businesses worldwide, sparking interest among forward-thinking companies. The potential for faster transactions, reduced costs, and borderless payments is enticing, yet the path to adoption remains fraught with regulatory and operational challenges. Amid this evolving scenario, a rumored

Manufacturers Adopt Digital Tools Amid Cyber and Labor Risks

In today’s rapidly changing manufacturing landscape, the push toward digital transformation has become an undeniable imperative for companies striving to maintain a competitive edge, as revealed by a comprehensive report from a leading industry source. Manufacturers across the globe are increasingly adopting cutting-edge technologies such as artificial intelligence (AI) and machine learning (ML) to overhaul their operations. This shift is

How Will BNPL Market Grow to $7.89 Trillion by 2034?

What if a new pair of sneakers or a much-needed laptop could be yours today, with payments spread out over weeks, without the burden of credit card interest? This is the promise of Buy Now Pay Later (BNPL), a financial service that’s reshaping how millions shop and spend. With the global BNPL market valued at $231.5 billion in 2025, projections

How Is AI Code Generation Impacting DevSecOps Security?

The software development landscape is undergoing a seismic shift with the meteoric rise of AI-powered code generation tools, which promise to turbocharge productivity and streamline workflows in ways previously unimaginable. However, this technological marvel is casting a shadow over DevSecOps—a critical methodology that embeds security throughout the software development lifecycle (SDLC). As organizations race to harness AI assistants for faster