How Will 5G Network Slicing Transform Broadcasting and Driving?

Article Highlights
Off On

The introduction of 5G network slicing is poised to revolutionize broadcasting and driving by enabling the creation of specialized, high-performance network segments tailored for specific applications. Network slicing allocates part of a 5G network specifically for certain tasks, ensuring dedicated bandwidth and stability. This technological innovation promises to alleviate many traditional challenges faced by both broadcasters and the automotive industry. In broadcasting, cable dependency and connectivity issues have long hampered operational efficiency and real-time transmission quality. Meanwhile, the automotive world grapples with ensuring reliable communication for autonomous vehicles. With 5G network slicing, these problems may soon become relics of the past.

Transforming Broadcasting: Enhanced Efficiency and Quality

KDDI has strategically integrated network slicing into its 5G standalone (SA) network to enhance broadcasting capabilities, especially at large venues such as stadiums and arenas. By optimizing the sub-6 GHz 5G SA network and directing antennas toward these locations, KDDI ensures enhanced coverage and capacity. This upgrade includes a dedicated network slice for video transmission, providing a stable communication channel separate from the general network used by thousands of spectators. This infrastructure improvement is crucial for broadcasting companies, as it significantly reduces both costs and complexities associated with traditional setups.

Historically, TV companies have depended on extensive cable layouts to connect cameras to outside broadcast vehicles, supported by dedicated microwave or satellite links. The introduction of network slicing makes this elaborate setup obsolete. A notable example is the 97th National High School Baseball Invitational Tournament broadcast by Mainichi Broadcasting System. By utilizing a smartphone, the TV station was able to film and broadcast footage of fans directly to a big screen at the venue. This approach underscored the ease, stability, and high quality of video transmission over a single carrier line, revolutionizing the way live events are covered.

KDDI’s forward-looking approach does not stop with baseball. The company envisions expanding the use of its network slice for broadcasting purposes to other sports, including track and field events. Additionally, there are plans to enable live drone footage transmissions, illustrating KDDI’s commitment to leveraging advanced 5G capabilities for enhanced real-time broadcasting and audience engagement. These developments exemplify the transformative potential of 5G network slicing in the broadcasting sector, setting the stage for more reliable and high-quality live event coverage.

Revolutionizing Autonomous Driving: Safety and Efficiency

In the realm of autonomous driving, 5G network slicing is emerging as a crucial technology to ensure the safety and efficiency of self-driving vehicles. NTT DoCoMo, another leading Japanese telecom player, has been at the forefront of developing an experimentally advanced network slicing solution in collaboration with NTT Communications and May Mobility. The focus of their efforts centers on creating a 5G SA slice tailored specifically for remotely monitoring Level 4 autonomous driving. Level 4 autonomy, as defined by the Society of Automotive Engineers (SAE), requires no human intervention but mandates remote monitoring for safety purposes.

During a recent demonstration, NTT DoCoMo showcased how its network slice could maintain high-resolution video transmission and consistent communication speeds, both of which are critical for the safe operation of driverless vehicles. The trial’s success underscored the immense potential of 5G network slicing in supporting advanced autonomous driving technologies. By ensuring stable and high-quality communication channels, network slicing addresses the key challenge of maintaining constant and reliable connectivity for autonomous vehicles. The implications of network slicing in autonomous driving extend beyond mere safety. By reducing latency and providing dedicated bandwidth, this technology enables real-time decision-making and fast data processing, thereby enhancing the overall driving experience. The advancements made by NTT DoCoMo demonstrate how 5G network slicing can be instrumental in facilitating the deployment of Level 4 autonomous vehicles, potentially transforming urban mobility and transportation systems. As autonomous driving continues to evolve, the role of 5G network slicing in ensuring secure and efficient vehicle operation will become increasingly prominent.

Future Considerations: The Broader Impact of 5G Network Slicing

The advent of 5G network slicing is set to transform broadcasting and driving by facilitating the creation of specialized, high-performance network segments designed for particular applications. Network slicing allocates specific portions of a 5G network for distinct tasks, ensuring devoted bandwidth and reliability. This technological breakthrough aims to address many long-standing challenges faced by broadcasters and the automotive industry. In broadcasting, dependency on cables and connectivity issues have historically hindered operational efficiency and the quality of real-time transmission. Concurrently, the automotive sector struggles with maintaining dependable communication for autonomous vehicles. The arrival of 5G network slicing could render these obstacles obsolete. Autonomous vehicles will benefit from enhanced communication reliability, essential for safety and navigation. Similarly, broadcasters can expect improved connectivity, reducing delays and enhancing real-time capabilities. This leap promises a future where both industries operate more seamlessly and efficiently.

Explore more

Microsoft Dynamics 365 Finance Transforms Retail Operations

In today’s hyper-competitive retail landscape, success hinges on more than just offering standout products or unbeatable prices—it requires flawless operational efficiency and razor-sharp financial oversight to keep pace with ever-shifting consumer demands. Retailers face mounting pressures, from managing multi-channel sales to navigating complex supply chains, all while ensuring profitability remains intact. Enter Microsoft Dynamics 365 Finance (D365 Finance), a cloud-based

How Does Microsoft Dynamics 365 AI Transform Business Systems?

In an era where businesses are grappling with unprecedented volumes of data and the urgent need for real-time decision-making, the integration of Artificial Intelligence (AI) into enterprise systems has become a game-changer. Consider a multinational corporation struggling to predict inventory shortages before they disrupt operations, or a customer service team overwhelmed by repetitive inquiries that slow down their workflow. These

Will AI Replace HR? Exploring Threats and Opportunities

Setting the Stage for AI’s Role in Human Resources The rapid integration of artificial intelligence (AI) into business operations has sparked a critical debate within the human resources (HR) sector: Is AI poised to overhaul the traditional HR landscape, or will it serve as a powerful ally in enhancing workforce management? With over 1 million job cuts reported in a

Trend Analysis: AI in Human Capital Management

Introduction to AI in Human Capital Management A staggering 70% of HR leaders report that artificial intelligence has already transformed their approach to workforce management, according to recent industry surveys, marking a pivotal shift in Human Capital Management (HCM). This rapid integration of AI moves HR from a traditionally administrative function to a strategic cornerstone in today’s fast-paced business environment.

How Can Smart Factories Secure Billions of IoT Devices?

In the rapidly evolving landscape of Industry 4.0, smart factories stand as a testament to the power of interconnected systems, where machines, data, and human expertise converge to redefine manufacturing efficiency. However, with this remarkable integration comes a staggering statistic: the number of IoT devices, a cornerstone of these factories, is projected to grow from 19.8 billion in 2025 to