Honda and the University of British Columbia Develop Smart, Flexible, and Sensitive Soft Sensor for Robotics and Prosthetics

In a groundbreaking collaboration, researchers from Honda and the University of British Columbia (UBC) have come together to create a novel soft sensor that is smart, flexible, and extremely sensitive. This pioneering sensor has the potential to revolutionize the fields of robotics and prosthetics, offering a range of applications and benefits.

The application of sensor skin to the surface of a robotic limb or prosthetic arm opens up a world of possibilities. By providing touch sensitivity and enhanced dexterity, this technology allows for more natural and intuitive interactions with objects and environments. This is especially significant for individuals with limb impairments, enabling them to regain a sense of touch and control.

The Tactile Softness Advantage

What sets this sensor apart is its tactile softness, akin to human skin. By mirroring the texture and suppleness of natural skin, it contributes to the safety and realism of human interactions. This means that the user can engage with the robotic limb or prosthetic arm without the fear of accidentally causing harm to themselves or others. The sensor offers a level of safety and comfort that is paramount for seamless integration into daily life.

Sensing Multiple Types of Forces

One of the key strengths of the smart soft sensor lies in its ability to sense several types of forces. Whether it’s pressure, vibration, or even temperature, the sensor can effectively detect and interpret these tactile stimuli. This capability opens up new possibilities for precise responses to different types of interactions, allowing for a more nuanced and realistic experience.

The Main Component: Silicone Rubber

At the heart of this smart soft sensor is the use of silicone rubber as the main component. This material, commonly used for skin special effects in motion pictures, provides the necessary flexibility and durability required for the sensor to function effectively. Simulating human skin, the sensor enhances the overall sensory experience and ensures a high level of accuracy.

Utilization of Weak Electric Fields

The sensor utilizes weak electric fields to sense objects, much like the touchscreens that we use daily. However, unlike traditional touchscreens, this sensor is flexible and can detect forces in various directions. This means that the sensor can respond to tactile stimuli not only by being pressed but also by being pushed or dragged. This enhances the versatility and functionality of the sensor, making it an indispensable tool in the realm of robotics and prosthetics.

Development and Collaboration

The technique behind this remarkable sensor was developed by the UBC team in partnership with Honda’s research institute, Frontier Robotics. Dr. Madden’s lab at UBC has a wealth of expertise in flexible sensors, making it an ideal collaborator for this groundbreaking project. The collaboration aims to develop tactile sensors that can be seamlessly integrated into robotic systems, offering enhanced capabilities and applications.

The creation of a smart, flexible, and sensitive soft sensor by Honda and the University of British Columbia heralds a new era in robotics and prosthetics. The sensor’s ability to mimic human touch, its responsiveness to various forces, and the collaboration’s focus on creating tactile sensors for robots all point to a future where human-machine interactions become more seamless, intuitive, and lifelike. With this innovation, the boundaries of what is possible in robotics and prosthetics are being pushed further, improving the lives of countless individuals and offering endless potential for advancement.

Explore more

How Will the 2026 Social Security Tax Cap Affect Your Paycheck?

In a world where every dollar counts, a seemingly small tweak to payroll taxes can send ripples through household budgets, impacting financial stability in unexpected ways. Picture a high-earning professional, diligently climbing the career ladder, only to find an unexpected cut in their take-home pay next year due to a policy shift. As 2026 approaches, the Social Security payroll tax

Why Your Phone’s 5G Symbol May Not Mean True 5G Speeds

Imagine glancing at your smartphone and seeing that coveted 5G symbol glowing at the top of the screen, promising lightning-fast internet speeds for seamless streaming and instant downloads. The expectation is clear: 5G should deliver a transformative experience, far surpassing the capabilities of older 4G networks. However, recent findings have cast doubt on whether that symbol truly represents the high-speed

How Can We Boost Engagement in a Burnout-Prone Workforce?

Walk into a typical office in 2025, and the atmosphere often feels heavy with unspoken exhaustion—employees dragging through the day with forced smiles, their energy sapped by endless demands, reflecting a deeper crisis gripping workforces worldwide. Burnout has become a silent epidemic, draining passion and purpose from millions. Yet, amid this struggle, a critical question emerges: how can engagement be

Leading HR with AI: Balancing Tech and Ethics in Hiring

In a bustling hotel chain, an HR manager sifts through hundreds of applications for a front-desk role, relying on an AI tool to narrow down the pool in mere minutes—a task that once took days. Yet, hidden in the algorithm’s efficiency lies a troubling possibility: what if the system silently favors candidates based on biased data, sidelining diverse talent crucial

HR Turns Recruitment into Dream Home Prize Competition

Introduction to an Innovative Recruitment Strategy In today’s fiercely competitive labor market, HR departments and staffing firms are grappling with unprecedented challenges in attracting and retaining top talent, leading to the emergence of a striking new approach that transforms traditional recruitment into a captivating “dream home” prize competition. This strategy offers new hires and existing employees a chance to win