Etherscan’s Code Reader: Revolutionizing Ethereum Smart Contract Analysis with AI-Powered Insights

Ethereum block explorer and analytics platform Etherscan has recently launched a new tool called “Code Reader,” which uses artificial intelligence to retrieve and interpret the source code of a specific contract address. This new AI-driven tool is expected to offer deeper insights into the code of contracts and provide comprehensive lists of smart contract functions related to Ethereum data. However, amid the AI boom, some experts have cautioned on the feasibility of current AI models.

Etherscan has launched an AI-driven tool called “Code Reader”

The Code Reader tool developed by Etherscan would help users to retrieve and interpret the source code of a specific contract address. After a user inputs a prompt, Code Reader generates a response via OpenAI’s large language model, providing insights into the contract’s source code files. This tool is expected to be useful in gaining deeper insights into contracts’ code via AI-generated explanations, obtaining comprehensive lists of smart contract functions related to Ethereum data, and understanding how the underlying contract interacts with decentralized applications.

Code reader’s capabilities and use cases

Code Reader’s capabilities include an AI-driven approach to retrieve and interpret the source code of a specific contract address. This tool is expected to be helpful in obtaining deeper insights into a contract’s code as it provides AI-generated explanations. Furthermore, Code Reader can also generate comprehensive lists of smart contract functions related to Ethereum data, which would assist users in understanding how the underlying contract interacts with decentralized applications.

Experts caution on the feasibility of current AI models

Amid an AI boom, experts have warned that current AI models face significant constraints in terms of complex data synchronization, network optimization, and data privacy and security concerns. According to a recent report published by Singaporean venture capital firm Foresight Ventures, computing power resources will be the next big battlefield for the next decade.

Computing power resources are set to be the next big battlefield

With AI becoming more prevalent in various industries, the demand for training large AI models has grown in decentralized distributed computing power networks. However, researchers say current prototypes face significant constraints such as complex data synchronization, network optimization, data privacy, and security concerns. Computing power resources are expected to be the next big battlefield in the coming decade.

Current constraints of decentralized distributed computing power networks

In decentralized distributed computing power networks, training a large model with 175 billion parameters using single-precision floating-point representation would require around 700 gigabytes. However, distributed training requires frequent transmission and updates between computing nodes. Researchers suggest that small AI models are still a more feasible choice in most scenarios.

Training large AI models requires significant resources

Training large AI models requires significant resources in terms of computing power, data storage, and network optimization. In most scenarios, small AI models are still a more feasible choice. Distributed training would require these parameters to be frequently transmitted and updated between computing nodes, making it a complex process. Current prototypes are facing significant constraints such as complex data synchronization, network optimization, data privacy, and security concerns.

Small AI models are still a more feasible choice in most scenarios

Researchers have recommended that small AI models remain a more feasible choice for most scenarios. They argue that there is no need to fear missing out on large models during the tide of FOMO (fear of missing out). The researchers noted that small AI models could be a more practical choice over large AI models that require significant computing power, data storage, and network optimization.

As the demand for training large AI models grows, distributed computing power networks are expected to be the next big battlefield in the coming decade. While large AI models have their advantages, researchers suggest that small AI models remain a more practical choice in most scenarios. Current prototypes face significant constraints such as complex data synchronization, network optimization, data privacy, and security concerns. Etherscan’s new AI-driven tool called Code Reader offers new capabilities for retrieving and interpreting the source code of a specific contract address. This would assist in gaining deeper insights into contracts’ code and understanding how the underlying contract interacts with decentralized applications.

Explore more

What Is the EU’s Roadmap for 6G Spectrum?

With the commercial launch of 6G services targeted for around 2030, the European Union’s Radio Spectrum Policy Group (RSPG) has initiated a decisive and forward-thinking strategy to secure the necessary spectrum well in advance of the technology’s widespread deployment. This proactive stance is detailed in a new “Draft RSPG Opinion on a 6G Spectrum Roadmap,” a document that builds upon

Trend Analysis: AI and 6G Convergence

The very fabric of our digital existence is on the cusp of evolving into a sentient-like infrastructure, a global nervous system powered not just by connectivity but by predictive intelligence. This is not the realm of science fiction but the tangible future promised by the convergence of Artificial Intelligence and 6G. As 5G technology reaches maturity, the global race is

Who Will Lead the Robotics Revolution in 2025?

The silent hum of automated systems has grown from a factory floor whisper into a pervasive force poised to redefine the very structure of global commerce, defense, and daily existence. As the threshold of 2025 is crossed, the question of leadership in the robotics revolution is no longer a futuristic inquiry but an urgent assessment of the present, with the

Trend Analysis: China Robotics Ascendancy

The year 2024 marked a watershed moment in global manufacturing, a point where China single-handedly installed more industrial robots than the rest of the world combined, signaling a monumental and irreversible shift in the global automation landscape. This explosive growth is far more than a simple industrial trend; it represents a calculated geopolitical force poised to redefine the architecture of

Trend Analysis: Intelligent Robotic Vision

The era of industrial robots operating blindly within meticulously structured environments is rapidly drawing to a close, replaced by a new generation of machines endowed with the sophisticated ability to see, comprehend, and intelligently adapt to the dynamic world around them. This transformative shift, fueled by the convergence of advanced optics, artificial intelligence, and powerful processing, is moving automation beyond