Enhancing UAVs’ Tracking Performance with Dynamic IBVS Technique under Unstable Disturbances

Tracking dynamic targets in GPS-denied environments poses a significant challenge for unmanned aerial vehicles (UAVs). In recent years, image-based visual servoing (IBVS) methods have emerged as a promising solution for aiding UAVs in this task. This article presents a novel IBVS method, as outlined in a study published in the journal Engineering, that enhances the tracking performance of UAVs in such environments.

Methodology

The proposed IBVS method utilizes a constructed virtual camera to derive simplified and decoupled image dynamics specifically designed for underactuated UAVs. Unlike traditional methods, this approach takes into account uncertainties caused by unpredictable rotations and velocities of dynamic targets. To address tracking rotating targets with arbitrary orientations, the researchers have developed a unique image depth model that extends the capabilities of the IBVS method.

The development of a velocity observer is another key aspect of this methodology. This observer allows for the evaluation of comparative velocities between the UAV and the dynamic target. By incorporating this observer, the methodology eliminates the need for translational velocity measurements and reduces control chatter resulting from noisy measurements.

Implementation

The integration of the velocity observer into the IBVS system is a significant implementation step. With the observer in place, the reliance on translational velocity measurements becomes unnecessary, simplifying the tracking process. Additionally, an integral-based filter has been introduced to compensate for unpredictable environmental disturbances. This enhancement improves the anti-disturbance ability of the UAV, ensuring more accurate tracking performance.

Stability Analysis

To ensure the robustness of the system, the stability of both the velocity observer and IBVS controller has been thoroughly investigated using the Lyapunov method. This analysis provides confidence in the stability and reliability of the proposed method in tracking dynamic targets.

Experimental Results

Comparative simulations and multistage experiments have been conducted to evaluate the performance of the proposed method. These experiments aim to demonstrate the tracking stability, anti-disturbance ability, and tracking robustness of the dynamic IBVS technique, particularly in the presence of dynamic rotating targets. The results confirm the effectiveness and efficiency of the proposed method in real-world scenarios.

Novel Image Depth Model

A key contribution of this study is the introduction of a special image depth model. This model accurately removes image depth without requiring rotation information about the tracked target. By eliminating the need for this information, the tracking process becomes more efficient and reliable.

The study presented in this article introduces a dynamic IBVS technique that significantly enhances UAVs’ tracking performance in unstable disturbances and GPS-denied environments. By utilizing a virtual camera, developing a unique image depth model, and incorporating a velocity observer, the proposed method addresses challenges associated with unpredictable rotations and velocities of dynamic targets. Comparative simulations and multistage experiments demonstrate the effectiveness and robustness of the approach. Overall, this study contributes to the advancement of UAV tracking technology, opening up new possibilities for applications in various industries.

Explore more

AI Faces a Year of Reckoning in 2026

The initial, explosive era of artificial intelligence, characterized by spectacular advancements and unbridled enthusiasm, has given way to a more sober and pragmatic period of reckoning. Across the technology landscape, the conversation is shifting from celebrating novel capabilities to confronting the immense strain AI places on the foundational pillars of data, infrastructure, and established business models. Organizations now face a

BCN and Arrow Partner to Boost AI and Data Services

The persistent challenge for highly specialized technology firms has always been how to project their deep, niche expertise across a broad market without diluting its potency or losing focus on core competencies. As the demand for advanced artificial intelligence and data solutions intensifies, this puzzle of scaling specialized knowledge has become more critical than ever, prompting innovative alliances designed to

Will This Deal Make ClickHouse the King of AI Analytics?

In a defining moment for the artificial intelligence infrastructure sector, the high-performance database company ClickHouse has executed a powerful two-part strategy by acquiring Langfuse, an open-source observability platform for large language models, while simultaneously securing a staggering $400 million in Series D funding. This dual maneuver, which elevates the company’s valuation to an impressive $15 billion, is far more than

Can an AI Finally Remember Your Project’s Context?

The universal experience of briefing an artificial intelligence assistant on the same project details for the tenth time highlights a fundamental limitation that has long hampered its potential as a true creative partner. This repetitive “context tax” not only stalls momentum but also transforms a powerful tool into a tedious administrative chore. The central challenge has been clear: What if

Will AI Drive Another Automotive Chip Shortage?

The unsettling quiet of near-empty dealership lots from the recent pandemic-era semiconductor crisis may soon return, but this time the driving force is not a global health emergency but the insatiable appetite of the artificial intelligence industry. A looming supply chain disruption, centered on a critical component—the memory chip—is threatening to once again stall vehicle production lines across the globe,