Enhancing UAVs’ Tracking Performance with Dynamic IBVS Technique under Unstable Disturbances

Tracking dynamic targets in GPS-denied environments poses a significant challenge for unmanned aerial vehicles (UAVs). In recent years, image-based visual servoing (IBVS) methods have emerged as a promising solution for aiding UAVs in this task. This article presents a novel IBVS method, as outlined in a study published in the journal Engineering, that enhances the tracking performance of UAVs in such environments.

Methodology

The proposed IBVS method utilizes a constructed virtual camera to derive simplified and decoupled image dynamics specifically designed for underactuated UAVs. Unlike traditional methods, this approach takes into account uncertainties caused by unpredictable rotations and velocities of dynamic targets. To address tracking rotating targets with arbitrary orientations, the researchers have developed a unique image depth model that extends the capabilities of the IBVS method.

The development of a velocity observer is another key aspect of this methodology. This observer allows for the evaluation of comparative velocities between the UAV and the dynamic target. By incorporating this observer, the methodology eliminates the need for translational velocity measurements and reduces control chatter resulting from noisy measurements.

Implementation

The integration of the velocity observer into the IBVS system is a significant implementation step. With the observer in place, the reliance on translational velocity measurements becomes unnecessary, simplifying the tracking process. Additionally, an integral-based filter has been introduced to compensate for unpredictable environmental disturbances. This enhancement improves the anti-disturbance ability of the UAV, ensuring more accurate tracking performance.

Stability Analysis

To ensure the robustness of the system, the stability of both the velocity observer and IBVS controller has been thoroughly investigated using the Lyapunov method. This analysis provides confidence in the stability and reliability of the proposed method in tracking dynamic targets.

Experimental Results

Comparative simulations and multistage experiments have been conducted to evaluate the performance of the proposed method. These experiments aim to demonstrate the tracking stability, anti-disturbance ability, and tracking robustness of the dynamic IBVS technique, particularly in the presence of dynamic rotating targets. The results confirm the effectiveness and efficiency of the proposed method in real-world scenarios.

Novel Image Depth Model

A key contribution of this study is the introduction of a special image depth model. This model accurately removes image depth without requiring rotation information about the tracked target. By eliminating the need for this information, the tracking process becomes more efficient and reliable.

The study presented in this article introduces a dynamic IBVS technique that significantly enhances UAVs’ tracking performance in unstable disturbances and GPS-denied environments. By utilizing a virtual camera, developing a unique image depth model, and incorporating a velocity observer, the proposed method addresses challenges associated with unpredictable rotations and velocities of dynamic targets. Comparative simulations and multistage experiments demonstrate the effectiveness and robustness of the approach. Overall, this study contributes to the advancement of UAV tracking technology, opening up new possibilities for applications in various industries.

Explore more

How AI Agents Work: Types, Uses, Vendors, and Future

From Scripted Bots to Autonomous Coworkers: Why AI Agents Matter Now Everyday workflows are quietly shifting from predictable point-and-click forms into fluid conversations with software that listens, reasons, and takes action across tools without being micromanaged at every step. The momentum behind this change did not arise overnight; organizations spent years automating tasks inside rigid templates only to find that

AI Coding Agents – Review

A Surge Meets Old Lessons Executives promised dazzling efficiency and cost savings by letting AI write most of the code while humans merely supervise, but the past months told a sharper story about speed without discipline turning routine mistakes into outages, leaks, and public postmortems that no board wants to read. Enthusiasm did not vanish; it matured. The technology accelerated

Open Loop Transit Payments – Review

A Fare Without Friction Millions of riders today expect to tap a bank card or phone at a gate, glide through in under half a second, and trust that the system will sort out the best fare later without standing in line for a special card. That expectation sits at the heart of Mastercard’s enhanced open-loop transit solution, which replaces

OVHcloud Unveils 3-AZ Berlin Region for Sovereign EU Cloud

A Launch That Raised The Stakes Under the TV tower’s gaze, a new cloud region stitched across Berlin quietly went live with three availability zones spaced by dozens of kilometers, each with its own power, cooling, and networking, and it recalibrated how European institutions plan for resilience and control. The design read like a utility blueprint rather than a tech

Can the Energy Transition Keep Pace With the AI Boom?

Introduction Power bills are rising even as cleaner energy gains ground because AI’s electricity hunger is rewriting the grid’s playbook and compressing timelines once thought generous. The collision of surging digital demand, sharpened corporate strategy, and evolving policy has turned the energy transition from a marathon into a series of sprints. Data centers, crypto mines, and electrifying freight now press