Critical Flaw in TP-Link Routers: Remote Takeover and DoS Risk

A significant security vulnerability has been discovered in TP-Link VN020-F3v(T) routers with firmware version TT_V6.2.1021. This flaw, identified as CVE-2024-11237, allows attackers to remotely take over the routers, leading to potential Denial of Service (DoS) and Remote Code Execution (RCE) attacks. These attacks can severely impact network functionality and compromise data security by allowing unauthorized access and control over network devices.

The identified vulnerability is known as a stack-based buffer overflow, categorized under CWE-121. This flaw allows remote attackers to exploit the router by sending specially crafted DHCP DISCOVER packets to its DHCP server, which operates on UDP port 67. The critical aspect of this vulnerability is that it does not require prior authentication, thereby making it an accessible and significant threat. Exploitation involves the use of either excessively long hostnames or manipulated vendor-specific options within DHCP packets. These malformed inputs result in the router mishandling the data and causing a buffer overflow, which stems from the inherent processing flaws within the device’s firmware. The proprietary nature of the firmware unfortunately limits detailed examination and access to specific implementation details.

Vulnerability Identification and Exploitation Method

The vulnerability within TP-Link VN020-F3v(T) routers can be exploited through a process that involves sending specially crafted DHCP DISCOVER packets to the device’s DHCP server on UDP port 67. Attackers leverage excessively long hostnames or manipulated vendor-specific options within these packets to initiate the exploitation process without requiring prior authentication. This makes the flaw particularly dangerous as it greatly simplifies the attack process. The inherent flaw stems from how these routers process specific inputs, resulting in a buffer overflow due to the mishandling of data.

Experts have identified that the key issue originates from the incorrect processing of DHCP packets that contain oversized or malformed inputs. This buffer overflow condition occurs when the router improperly verifies the lengths of DHCP options, such as long hostnames exceeding 127 characters or mismatched lengths in vendor-specific options. Consequently, the router’s memory gets corrupted, leading to potential crashes and the risk of remote code execution. Although the proprietary firmware restricts full analysis, researchers used behavioral observation and black-box testing to determine the vulnerability’s impact.

Impact and Affected Regions

The primary consequences of exploiting this vulnerability include significant risks such as the router becoming unresponsive (Denial of Service) and enabling remote code execution capabilities. These outcomes pose severe threats to network control and data integrity, highlighting the importance of addressing this flaw promptly. Notably, users under specific ISPs like Tunisie Telecom and Topnet, primarily located in Algeria and Morocco, are particularly affected due to the widespread deployment of the vulnerable routers in these regions.

The vulnerability’s implications extend beyond individual inconveniences, as it compromises overall network stability. Network devices failing to assign IP addresses due to router malfunction can amplify disruptions across multiple devices and services dependent on continuous network access. Attackers taking advantage of the low complexity required to exploit this flaw could potentially control or disrupt numerous systems. Therefore, it is imperative to address this vulnerability urgently to mitigate its profound impact on affected networks.

Memory Corruption and Stack Overflow

Symptomatic analysis of this vulnerability reveals that the routers experience memory corruption leading to stack overflows. Critical memory locations, including the router’s return address, get overwritten, causing instability and opening the door to potential remote code execution. This memory corruption can significantly impact network operations, deteriorating the reliability and performance of the affected routers. Such compromised routers can result in substantial network downtime, leading to widespread inconvenience for users who rely on multiple devices for their daily activities.

The low complexity involved in exploiting this vulnerability—the attack does not require sophisticated techniques or tools—makes it an attractive target for hackers. The risk of attack is elevated by the ease with which malicious individuals can deploy the exploit to gain unauthorized control or disrupt network services. Given the potential aftermath of such exploits, including severe downtime and compromised security, addressing this vulnerability through immediate mitigation measures is essential to protect affected systems.

Interim Mitigation Measures

In the absence of an official patch from TP-Link, users and network administrators must proactively implement mitigation strategies to protect their networks. One effective measure includes disabling the DHCP server feature within the router’s settings if it is not critical to network operations. By turning off this service, the potential attack surface can be reduced, limiting the exposure to the vulnerability. Another recommended strategy involves filtering DHCP traffic at the network edge, blocking malicious packets from reaching the vulnerable routers.

For those who can, switching to alternative router models that are not susceptible to this specific vulnerability presents an immediate and effective defense. These interim measures are crucial in safeguarding networks until an official patch is released by TP-Link. Implementing these strategies promptly can help mitigate risks associated with this vulnerability, protecting sensitive data and maintaining network functionality.

Recommendations for Users and Network Administrators

A major security vulnerability has been identified in TP-Link VN020-F3v(T) routers with firmware version TT_V6.2.1021, documented as CVE-2024-11237. This flaw enables attackers to remotely compromise the routers, resulting in potential Denial of Service (DoS) and Remote Code Execution (RCE) attacks. These types of assaults can significantly damage network functionality and jeopardize data security by permitting unauthorized access and control over network devices.

Classified as a stack-based buffer overflow and listed under CWE-121, this vulnerability can be exploited by remote attackers through the router’s DHCP server on UDP port 67. Exploitation involves sending specially crafted DHCP DISCOVER packets with either excessively long hostnames or manipulated vendor-specific options. These malformed packets lead to improper data handling by the router, causing a buffer overflow due to inherent firmware processing flaws. The critical factor here is that no prior authentication is required, making this a substantial threat. The proprietary nature of the firmware restricts detailed analysis and prevents full access to specific implementation details.

Explore more

Resilience Becomes the New Velocity for DevOps in 2026

With extensive expertise in artificial intelligence, machine learning, and blockchain, Dominic Jainy has a unique perspective on the forces reshaping modern software delivery. As AI-driven development accelerates release cycles to unprecedented speeds, he argues that the industry is at a critical inflection point. The conversation has shifted from a singular focus on velocity to a more nuanced understanding of system

Can a Failed ERP Implementation Be Saved?

The ripple effect of a malfunctioning Enterprise Resource Planning system can bring a thriving organization to its knees, silently eroding operational efficiency, financial integrity, and employee morale. An ERP platform is meant to be the central nervous system of a business, unifying data and processes from finance to the supply chain. When it fails, the consequences are immediate and severe.

When Should You Upgrade to Business Central?

Introduction The operational rhythm of a growing business is often dictated by the efficiency of its core systems, yet many organizations find themselves tethered to outdated enterprise resource planning platforms that silently erode productivity and obscure critical insights. These legacy systems, once the backbone of operations, can become significant barriers to scalability, forcing teams into cycles of manual data entry,

Is Your ERP Ready for Secure, Actionable AI?

Today, we’re speaking with Dominic Jainy, an IT professional whose expertise lies at the intersection of artificial intelligence, machine learning, and enterprise systems. We’ll be exploring one of the most critical challenges facing modern businesses: securely and effectively connecting AI to the core of their operations, the ERP. Our conversation will focus on three key pillars for a successful integration:

Trend Analysis: Next-Generation ERP Automation

The long-standing relationship between users and their enterprise resource planning systems is being fundamentally rewritten, moving beyond passive data entry toward an active partnership with intelligent, autonomous agents. From digital assistants to these new autonomous entities, the nature of enterprise automation is undergoing a radical transformation. This analysis explores the leap from AI-powered suggestions to true, autonomous execution within ERP