Are Seagate’s 30TB and 32TB HAMR Drives the Future of Data Storage?

In a groundbreaking move for the data storage industry, Seagate has unveiled the world’s first high-capacity HDDs using Heat-Assisted Magnetic Recording (HAMR) technology, signaling a new era in data storage capacities. This monumental advancement had been in development for decades, with initial patents tracing back to 1954 and the company’s research kicking off in the 1990s. The result of these extensive efforts are the new Exos M drives, available in 30TB and 32TB models. The 30TB drive employs conventional magnetic recording (CMR) while the 32TB model utilizes the controversial shingled magnetic recording (SMR) technique, both promising a high data density of 3TB per platter, along with notable improvements in energy efficiency and sustainability.

The Emergence of HAMR Technology

Seagate’s innovative HAMR technology marks a significant leap forward in data storage, leveraging a laser diode to heat tiny areas of the disk to enable higher density digital writing. This intricate heating, writing, and cooling process occurs rapidly, within less than one nanosecond. Developed on Seagate’s Mozaic 3+ platform, these HAMR drives promise enhanced efficiency and reliability, positioning them as a transformative solution for the industry’s future needs. Extensive testing, involving over 500,000 Mozaic 3+ hard drives, has demonstrated that HAMR HDDs are as reliable as traditional magnetic drives, dispelling concerns surrounding the new technology. Seagate’s commitment to continued innovation is further illustrated by plans to increase platter density to as much as 4TB in future models, potentially leading to even higher capacity drives.

Industry Implications and Future Prospects

The release of the new Exos M series, available in 30TB and 32TB models, signifies a new chapter not only for Seagate but for the entire data storage industry, paving the way for future advancements and higher storage capacities. The 30TB drive employs conventional magnetic recording (CMR), while the 32TB model uses the more debated shingled magnetic recording (SMR) technique. Both versions promise a high data density of 3TB per platter, accompanied by notable improvements in energy efficiency and sustainability. This milestone, developed over decades with initial patents dating back to 1954 and research beginning in the 1990s, indicates the extensive efforts behind these advancements.

Explore more

Agentic AI Redefines the Software Development Lifecycle

The quiet hum of servers executing tasks once performed by entire teams of developers now underpins the modern software engineering landscape, signaling a fundamental and irreversible shift in how digital products are conceived and built. The emergence of Agentic AI Workflows represents a significant advancement in the software development sector, moving far beyond the simple code-completion tools of the past.

Is AI Creating a Hidden DevOps Crisis?

The sophisticated artificial intelligence that powers real-time recommendations and autonomous systems is placing an unprecedented strain on the very DevOps foundations built to support it, revealing a silent but escalating crisis. As organizations race to deploy increasingly complex AI and machine learning models, they are discovering that the conventional, component-focused practices that served them well in the past are fundamentally

Agentic AI in Banking – Review

The vast majority of a bank’s operational costs are hidden within complex, multi-step workflows that have long resisted traditional automation efforts, a challenge now being met by a new generation of intelligent systems. Agentic and multiagent Artificial Intelligence represent a significant advancement in the banking sector, poised to fundamentally reshape operations. This review will explore the evolution of this technology,

Cooling Job Market Requires a New Talent Strategy

The once-frenzied rhythm of the American job market has slowed to a quiet, steady hum, signaling a profound and lasting transformation that demands an entirely new approach to organizational leadership and talent management. For human resources leaders accustomed to the high-stakes war for talent, the current landscape presents a different, more subtle challenge. The cooldown is not a momentary pause

What If You Hired for Potential, Not Pedigree?

In an increasingly dynamic business landscape, the long-standing practice of using traditional credentials like university degrees and linear career histories as primary hiring benchmarks is proving to be a fundamentally flawed predictor of job success. A more powerful and predictive model is rapidly gaining momentum, one that shifts the focus from a candidate’s past pedigree to their present capabilities and