AMD to Leverage Samsung’s 4nm and TSMC’s 3nm Process Nodes for Next-Gen Chips

As the race for faster and more efficient processors continues, AMD has emerged as a key player with its Zen architecture. In a bid to further enhance its chip technology, the company is reportedly tapping into Samsung’s 4nm and TSMC’s 3nm process nodes for its upcoming generation of chips. In this article, we delve into the details surrounding this development and explore the motivations behind AMD’s decision.

Engineer Reveals the Range of Process Nodes

A data leak reveals that AMD’s engineers are leveraging a diverse range of process nodes to accelerate the development of their next-gen IPs. Among the most intriguing process nodes being utilized are TSMC N3 (3nm) and Samsung 4nm. These choices indicate a strategic decision to explore cutting-edge process technologies in order to push the boundaries of performance and efficiency.

Zen 5 Core Architecture and Process Nodes

The Zen 5 core architecture is set to be a significant milestone for AMD, incorporating a mix of 4nm and 3nm process nodes. By utilizing a combination of these advanced manufacturing technologies, AMD aims to strike a balance between power consumption, thermal management, and overall performance. This approach underscores AMD’s commitment to delivering high-quality and competitive products in an increasingly demanding market.

Potential Shift towards Samsung’s 4nm

There have been speculations that AMD might shift a portion of its production to Samsung’s 4nm process technology. While the extent of this collaboration remains unknown, this move could offer AMD additional flexibility and capacity to meet the growing demands of its customers. A partnership with Samsung in this context could potentially unlock new opportunities for collaboration and contribute to the overall advancement of the semiconductor industry.

Testing the Waters: Samsung Foundries and AMD

It is plausible that AMD has engaged with Samsung Foundries for a test run or to develop a specific I/O die. This would provide AMD with valuable insights into the capabilities and performance of Samsung’s 4nm process node. However, it is important to note that current reports suggest it is unlikely for AMD to produce any major intellectual property (IP) on Samsung’s 4nm process, indicating a cautious approach towards new partnerships and technologies.

Codenames and Future Developments

In the world of chip development, codenames often offer intriguing glimpses into the future. Recent leaks have revealed that the Zen 4 architecture, expected to be the next iteration after Zen 3, has been codenamed “Persephone.” Furthermore, the leaks indicate that Zen 5 is referred to as “Nirvana,” and Zen 6 as “Morpheus.” These codenames hint at AMD’s progressive vision for its future products and signify the company’s commitment to continuous innovation.

The Zen 5C Core: Prometheus

Turning attention to the Zen 5C core, there is speculation that it may be codenamed “Prometheus” considering the likelihood of the codename based on established patterns. This potential name suggests ambitions for the Zen 5C to introduce groundbreaking advancements, similar to the mythical figure Prometheus, who brought fire and technological advancement to humanity.

As AMD continues to push the boundaries of performance and efficiency, its collaboration with Samsung and TSMC for next-gen chips has the potential to yield significant advancements in chip technology. By leveraging Samsung’s 4nm and TSMC’s 3nm process nodes, AMD aims to deliver processors that are power-efficient, high-performing, and competitive in a rapidly evolving market. With codenames like Persephone, Nirvana, and Morpheus hinting at future developments, AMD is poised to make a lasting impact on the semiconductor industry with its upcoming Zen architectures.

Explore more

A Unified Framework for SRE, DevSecOps, and Compliance

The relentless demand for continuous innovation forces modern SaaS companies into a high-stakes balancing act, where a single misconfigured container or a vulnerable dependency can instantly transform a competitive advantage into a catastrophic system failure or a public breach of trust. This reality underscores a critical shift in software development: the old model of treating speed, security, and stability as

AI Security Requires a New Authorization Model

Today we’re joined by Dominic Jainy, an IT professional whose work at the intersection of artificial intelligence and blockchain is shedding new light on one of the most pressing challenges in modern software development: security. As enterprises rush to adopt AI, Dominic has been a leading voice in navigating the complex authorization and access control issues that arise when autonomous

Canadian Employers Face New Payroll Tax Challenges

The quiet hum of the payroll department, once a symbol of predictable administrative routine, has transformed into the strategic command center for navigating an increasingly turbulent regulatory landscape across Canada. Far from a simple function of processing paychecks, modern payroll management now demands a level of vigilance and strategic foresight previously reserved for the boardroom. For employers, the stakes have

How to Perform a Factory Reset on Windows 11

Every digital workstation eventually reaches a crossroads in its lifecycle, where persistent errors or a change in ownership demands a return to its pristine, original state. This process, known as a factory reset, serves as a definitive solution for restoring a Windows 11 personal computer to its initial configuration. It systematically removes all user-installed applications, personal data, and custom settings,

What Will Power the New Samsung Galaxy S26?

As the smartphone industry prepares for its next major evolution, the heart of the conversation inevitably turns to the silicon engine that will drive the next generation of mobile experiences. With Samsung’s Galaxy Unpacked event set for the fourth week of February in San Francisco, the spotlight is intensely focused on the forthcoming Galaxy S26 series and the chipset that